DOI QR코드

DOI QR Code

Overproduction of a γ-glutamyltranspeptidase from Bacillus amyloliquefaciens in Bacillus subtilis through medium optimization

배지최적화를 통한 재조합 바실러스 서브틸리스에서 바실러스 아밀로리퀴파시엔스 유래 γ-글루타밀펩타이드전달효소의 대량생산

  • Received : 2017.07.31
  • Accepted : 2017.08.14
  • Published : 2017.12.31

Abstract

${\gamma}$-Glutamyltranspeptidase (GGT, EC 2.3.2.2) transfers ${\gamma}$-glutamyl moiety from glutamine to amino acids or peptides and hydrolyzes glutamine to glutamate and ammonia. In order to overproduce ${\gamma}$-glutamyltranspeptidase from Bacillus amyloliquefaciens (BAGGT), the encoding gene was cloned and expressed in Bacillus subtilis. The productivity of BAGGT in Bacillus subtilis was improved by 42-fold by using a dual-promoter system that was generated by combining promoters from B. subtilis ${\alpha}$-amylase and BAGGT genes. Through optimization of medium composition by Plackett-Burman design and central composition design, BAGGT was produced at $18.3{\times}10^7U/L$ of culture in the optimized medium. Compared to previously used Luria-Bertani medium, the optimized culture medium (15 g/L molasses, 60 g/L corn steep liquor, 6 g/L yeast extract, 4 g/L NaCl, 6 g/L $K_2HPO_4$, and 2 g/L $KH_2PO_4$), resulted in a 4.3-fold increase in production of BAGGT.

본 연구를 통해 BAGGT를 재조합 B. subtilis를 이용하여 대량 생산하기 위하여 유전자 클로닝, 발현 시스템 구축 및 배지 최적화를 진행하였다. 이중프로모터 시스템을 이용하여 야생형 균주에 비해 42배 효소 생산성이 향상된 발현 시스템을 구축하였다. 또한 PBD 분석을 통해 당밀과 CSL이 재조합 B. subtilis 시스템에서 BAGGT의 생산성에 큰 영향을 주는 인자임을 확인하였으며, 염류의 첨가에 의한 효소 생산성 증대 효과는 미비하거나 부정적이었다. 탄소원으로 당밀을 선택하고 고가의 질소원인 트립톤을 저가의 CSL로 교체한 후 CCD 분석을 통해서 결정된 최적배지 사용 시 최적화 이전의 LB 배지 대비 4.3배의 생산성 증대를 이루었으며, 이는 LB 배지에서 야생형 균주의 BAGGT 생산성 대비 180배의 효소 생산성 개선에 해당하였다. 본 연구를 통해 식품용 효소로서 BAGGT의 대량생산을 위한 공정을 구축하였으며, 이후 정미성 소재 생산에 활용할 수 있을 것으로 기대한다.

Keywords

References

  1. Inoue M. Glutathionists in the battlefield of gamma-glutamyl cycle. Arch. Biochem. Biophys. 595: 61-63 (2016) https://doi.org/10.1016/j.abb.2015.11.023
  2. Suzuki H, Kumagai H. Autocatalytic processing of ${\gamma}$-glutamyltranspeptidase. J. Biol. Chem. 277: 43536-43543 (2002) https://doi.org/10.1074/jbc.M207680200
  3. Castellano I, Merlino A, Rossi M, La Cara F. Biochemical and structural properties of ${\gamma}$-glutamyl transpeptidase from Geobacillus thermodenitrificans: An enzyme specialized in hydrolase activity. Biochimie 92: 464-474 (2010) https://doi.org/10.1016/j.biochi.2010.01.021
  4. Okada T, Suzuki H, Wada K, Kumagai H, Fukuyama K. Crystal structure of the ${\gamma}$-glutamyltranspeptidase precursor protein from Escherichia coli. Structural changes upon autocatalytic processing and implications for the maturation mechanism. J. Biol. Chem. 282: 2433-2439 (2007) https://doi.org/10.1074/jbc.M607490200
  5. Minami H, Suzuki H, Kumagai H. Salt-tolerant ${\gamma}$-glutamyltranspeptidase from Bacillus subtilis 168 with glutaminase activity. Enzyme Microb. Technol. 32: 431-438 (2003) https://doi.org/10.1016/S0141-0229(02)00314-9
  6. Hillmann H, Behr J, Ehrmann MA, Vogel RF, Hofmann T. Formation of kokumi-enhancing ${\gamma}$-glutamyl dipeptides in parmesan cheese by means of ${\gamma}$-glutamyltransferase activity and stable isotope double-labeling studies. J. Agr. Food Chem. 64: 1784-1793 (2016) https://doi.org/10.1021/acs.jafc.6b00113
  7. Zhao CJ, Gnzle MG. Synthesis of taste-active ${\gamma}$-glutamyl dipeptides during sourdough fermentation by Lactobacillus reuteri. J. Agr. Food Chem. 64: 7561-7568 (2016) https://doi.org/10.1021/acs.jafc.6b02298
  8. Wang Q, Min C, Zhu F, Xin Y, Zhang S, Luo L, Yin Z. Production of bioactive ${\gamma}$-glutamyl transpeptidase in Escherichia coli using SUMO fusion partner and application of the recombinant enzyme to L-theanine synthesis. Curr. Microbiol. 62: 1535-1541 (2011) https://doi.org/10.1007/s00284-011-9891-7
  9. Mu W, Zhang T, Jiang B. An overview of biological production of L-theanine. Biotechnol. Adv. 33: 335-342 (2015) https://doi.org/10.1016/j.biotechadv.2015.04.004
  10. Shuai Y, Zhang T, Mu W, Jiang B. Purification and characterization of ${\gamma}$-glutamyltranspeptidase from Bacillus subtilis SK11. 004. J. Agr. Food Chem. 59: 6233-6238 (2011) https://doi.org/10.1021/jf2003249
  11. Vermeulen N, Gnzle MG, Vogel RF. Glutamine deamidation by cerealassociated lactic acid bacteria. J. Appl. Microbiol. 103: 1197-1205 (2007) https://doi.org/10.1111/j.1365-2672.2007.03333.x
  12. Pariza MW, Johnson EA. Evaluating the safety of microbial enzyme preparations used in food processing: update for a new century. Regul. Toxicol. Pharmacol. 33: 173-186 (2001) https://doi.org/10.1006/rtph.2001.1466
  13. Schumann W. Production of recombinant proteins in Bacillus subtilis. Adv. Appl. Microbiol. 62: 137-190 (2007)
  14. Nguyen HD, Nguyen QA, Ferreira RC, Ferreira L, Tran LT, Schumann W. Construction of plasmid-based expression vectors for Bacillus subtilis exhibiting full structural stability. Plasmid 54: 241-248 (2005) https://doi.org/10.1016/j.plasmid.2005.05.001
  15. Chen PT, Chiang CJ, Chao YP. Strategy to approach stable production of recombinant nattokinase in Bacillus subtilis. Biotechnol. Prog. 23: 808-813 (2007) https://doi.org/10.1021/bp070108j
  16. Kang HK, Jang JH, Shim JH, Park JT, Kim YW, Park KH. Efficient constitutive expression of thermostable 4-${\alpha}$-glucanotransferase in Bacillus subtilis using dual promoters. World J. Microbiol. Biotechnol. 26: 1915-1918 (2010) https://doi.org/10.1007/s11274-010-0351-5
  17. Choi CH, Kim SH, Jang JH, Park JT, Shim JH, Kim YW, Park KH. Enzymatic synthesis of glycosylated puerarin using maltogenic amylase from Bacillus stearothermophilus expressed in Bacillus subtilis. J. Sci. Food Agric. 90: 1179-1184 (2010) https://doi.org/10.1002/jsfa.3945
  18. Zhang K, Su L, Duan X, Liu L, Wu J. High-level extracellular protein production in Bacillus subtilis using an optimized dualpromoter expression system. Microb. Cell Fact. 16: 32 (2017) https://doi.org/10.1186/s12934-017-0649-1
  19. Keskin Gundogdu T, Deniz I, Caliskan G, Sahin ES, Azbar N. Experimental design methods for bioengineering applications. Crit. Rev. Biotechnol. 36: 368-388 (2016) https://doi.org/10.3109/07388551.2014.973014
  20. Plackett RL, Burman JP. The design of optimum multifactorial experiments. Biometrika 33: 305-325 (1946) https://doi.org/10.1093/biomet/33.4.305
  21. Singh V, Haque S, Niwas R, Srivastava A, Pasupuleti M, Tripathi CK. Strategies for fermentation medium optimization: An in-depth review. Front Microbiol. 7: 2087 (2017)
  22. Ahn JH. Characterization of ${\gamma}$-glutamyltransferase in Bacillus amyloliquefaciens. MS thesis, Korea University, Seoul, Korea (2013)
  23. Kim MS, Jang JH, Kim YW. Overproduction of a thermostable 4-${\alpha}$-glucanotransferase by codon optimization at N-terminus region. J. Sci. Food Agric. 93: 2683-2690 (2013) https://doi.org/10.1002/jsfa.6084
  24. Sadaie Y, Kada T. Formation of competent Bacillus subtilis cells. J. Bacteriol. 153: 813-821 (1983)
  25. Yamazaki H, Ohmura K, Nakayama A, Takeichi Y, Otozai K, Yamasaki M, Tamura G, Yamane K. ${\alpha}$-Amylase genes (amyR2 and amy$E^+$) from an ${\alpha}$-amylase-hyperproducing Bacillus subtilis strain: molecular cloning and nucleotide sequences. H. Bacteriol. 156: 327-337 (1983)
  26. Li L, Ma Y. Effects of metal ions on growth, ${\beta}$-oxidation system, and thioesterase activity of Lactococcus lactis. J. Dairy Sci. 97: 1-8 (2014) https://doi.org/10.3168/jds.2012-6228