DOI QR코드

DOI QR Code

삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술의 원리와 최신 연구현황

Principle and Research Trends of Triplet-triplet Annihilation Upconversion

  • 이학래 (부산대학교 화공생명.환경공학부) ;
  • 신성주 (부산대학교 화공생명.환경공학부) ;
  • 이명수 (부산대학교 화공생명.환경공학부) ;
  • 최현석 (부산대학교 화공생명.환경공학부) ;
  • 김재혁 (부산대학교 화공생명.환경공학부)
  • Lee, Hak Lae (Department of Chemical and Environmental Engineering, Pusan National University) ;
  • Shin, Sung Ju (Department of Chemical and Environmental Engineering, Pusan National University) ;
  • Lee, Myung Soo (Department of Chemical and Environmental Engineering, Pusan National University) ;
  • Choe, Hyun Seok (Department of Chemical and Environmental Engineering, Pusan National University) ;
  • Kim, Jae Hyuk (Department of Chemical and Environmental Engineering, Pusan National University)
  • 투고 : 2017.06.07
  • 심사 : 2017.07.28
  • 발행 : 2017.12.01

초록

삼중항-삼중항 소멸에 의한 광에너지 상향전환 기술(Triplet-triplet annihilation upconversion, TTA-UC)은 특정 에너지 조건을 만족시키는 유기물들의 조합에 의해 낮은 에너지의 광자를 높은 에너지의 광자로 변환시키는 특수한 광화학적 공정이다. TTA-UC는 태양광 스펙트럼 중 낮은 에너지 탓에 활용되지 못하고 소실되는 광자를 고 에너지의 광자로 변환시킴으로써 태양광에 기반한 광학기기들의 광에너지 전환효율을 획기적으로 향상시킬 수 있는 기술로 평가받고 있다. 본 논문은 아직 국내학계에 생소한 연구분야인 TTA-UC현상의 광화학적 원리와 특징을 소개하고, TTA-UC와 관련한 최신 연구동향과 응용분야, 그리고 향후 연구방향을 고찰하였다.

Triplet-triplet annihilation upconversion (TTA-UC) is a special photochemical process that converts low energy photons to higher energy photon via combination of organic chemicals which fulfill specific energetic criteria. TTA-UC has been known as attractive technology that is able to enhance energy conversion efficiency of the photonic devices based on sunlight, which is achieved by conversion of wasted low energy photons in solar spectrum into higher energy photon. In the present paper, we introduced the photochemical mechanism and characteristics of TTA-UC phenomenon, which is yet unfamiliar to the domestic academia, and investigated recent research status, application, and future research directions of TTA-UC technology.

키워드

참고문헌

  1. Cates, E. L., Chinnapongse, S L., Kim, J.-H. and Kim, J.-H., "Engineering Light: Advances in Wavelength Conversion Materials for Energy and Environmental Technologies," Environ. Sci. Technol., 46(22), 12316-12328(2012). https://doi.org/10.1021/es303612p
  2. Wang, F. and Liu, X., "Upconversion Multicolor Fine-tuning: Visible to Near-infrared Emission from Lanthanide-doped NaYF4 Nanoparticles," J. Am. Chem. Soc., 130(17), 5642-5643(2008). https://doi.org/10.1021/ja800868a
  3. Kim, D.-H., Ryu, J. H., Chung, J. H., Eun, J. W., Shim, K. B. and Cho, S.-Y., "Visible up-conversion Luminescence of $CaWO_{4}$: $Er^{3+}$, $Yb^{3+}$ and Emission Enhancement by Tri-doping of Ions," Korean J. Chem. Eng., 29(4), 519-524(2012). https://doi.org/10.1007/s11814-011-0196-0
  4. Jung, K. Y. and Kim, W. H., "Luminescence Characterization of Green Phosphor Prepared by Spray Pyrolysis," Korean Chem. Eng. Res., 53(5), 620-626(2015). https://doi.org/10.9713/kcer.2015.53.5.620
  5. Parker, C. A. and Hatchard, C. G., "Sensitised Anti-stokes Delayed Fluorescence," Proc. Chem. Soc. London., 386-387(1962).
  6. Parker, C. A. and Hatchard, C. G. and Joyce, T. A., "P-type Delayed Fluorescence from Ionic Species and Aromatic Hydrocarbons," J. Mol. Spectrosc., 311-319(1964).
  7. McCusker, C. E. and Castellano, F. N., "Materials Integrating Photochemical Upconversion," Top. Curr. Chem., 374, 19-43(2016). https://doi.org/10.1007/s41061-016-0021-7
  8. Cheng, Y. Y., Raphael, T. K., Clady, G. C. R., Tayebjee, M. J. Y., Ekins-Daukes, N. J., Crossley, M. J. and Schmidt, T. W., "On the Efficiency Limit of Triplet-triplet Annihilation for Photochemical Upconversion," Phys. Chem. Chem. Phys., 12, 66-71(2010). https://doi.org/10.1039/B913243K
  9. Cheng, Y. Y., Fuckel, B., Khoury, T., Clady, R. G. C. R., Tayebjee, M. J. Y., Ekins-Daukes, N. J., Crossley, M. J. and Schmidt, T. W., "Kinetic Analysis of Photochemical Upconversion by Triplet-triplet Annihilation: Beyond Any Spin Statistical Limit," J. Phys. Chem. Lett., 1, 1795-1799(2010). https://doi.org/10.1021/jz100566u
  10. Kim, J.-H., Deng, F., Castellano, F. N. and Kim, J.-H., "Red-to-Blue/Cyan/Green Upconvertiong Microcapsules for Aqueous- and Dry-phase Color Tuning and Magnetic Sorting," ACS Photonics, 1(4), 382-388(2014). https://doi.org/10.1021/ph500036m
  11. Haefele, A., Blumhoff, J., Khnayzer, R. S. and Castellano, F. N., "Getting to the (square) Root of the Problem: How to Make Noncoherent Pumped Upconversion Linear," J. Phys. Chem. Lett., 3, 299-303(2012). https://doi.org/10.1021/jz300012u
  12. Islangulov, R. R., Kozlov, D. V. and Castellano, F. N., "Low Power Upconversion Using MLCT Sensitizers," Chem. Commun., 30, 3776-3778(2005).
  13. Singh-Rachford, T. N. and Castellano, F. N., "Supra-nanosecond Dynamics of a Red-to-blue Photon Upconversion System," Inorg. Chem., 48(6), 2541-2548(2009). https://doi.org/10.1021/ic802114d
  14. Singh-Rachford, T. N. and Castellano, F. N., "Triplet Sensitized Red-to-blue Photon Upconversion," J. Phys. Chem. Lett., 1, 195-200(2010). https://doi.org/10.1021/jz900170m
  15. Singh-Rachford, T. N. and Castellano, F. N., "Photon Upconversion Based on Sensitized Triplet-triplet Annihilation," Coordin. Chem. Rev., 254 2560-2573(2010). https://doi.org/10.1016/j.ccr.2010.01.003
  16. Singh-Rachford, T. N., Haefele, A., Ziessel, R. and Castellano, F. N., "Boron Dipyrromethene Chromophores: Next Generation Triplet Acceptors/annihilators for Low Power Upconversion Schemes," J. Am. Chem. Soc., 130, 16164-16165(2008). https://doi.org/10.1021/ja807056a
  17. Yakutkin, V., Aleshchenkov, S., Chernov, S., Miteva, T., Nelles, G., Cheprakov, A. and Baluschev, S., "Towards the IR Limit of the Triplet-triplet Annihilation-supported up-conversion: Tetraanthraporphyrin," Chem. Eur. J., 14, 9846-9850(2008). https://doi.org/10.1002/chem.200801305
  18. Singh-Rachford, T. N. and Castellano, F. N., "Low Power Visibleto-UV Upconversion," J. Phys. Chem. A, 113, 5912-5917(2009). https://doi.org/10.1021/jp9021163
  19. Khnayzer, R. S., Blumhoff, J., Harrington, J. A., Haefele, A., Deng, F. and Castellano, F. N., "Upconversion-powered Photoelectrochemistry," Chem. Commun., 48, 209-211(2012). https://doi.org/10.1039/C1CC16015J
  20. Kim, J. H. and Kim, J. H., "Encapsulated Triplet-triplet Annihilation-based Upconversion in the Aqueous Phase for Sub-band-gap Semiconductor Photocatalysis," J. Am. Chem. Soc., 134, 17478-17481(2012). https://doi.org/10.1021/ja308789u
  21. Liu, Q., Yin, B., Yang, T., Yang, Y., Shen, Z., Yao, P. and Li, F., "A General Strategy for Biocompatible, High-effective Upconversion Nanocapsules Based on Triplet-triplet Annihilation," J. Am. Chem. Soc., 135, 5029-5037(2013). https://doi.org/10.1021/ja3104268
  22. Kim, J. H. and Kim, J. H., "Triple-emulsion Microcapsules for Highly Efficient Multispectral Upconversion in the Aqueous Phase," ACS Photonics, 2, 633-638(2015). https://doi.org/10.1021/acsphotonics.5b00042
  23. Kim, J. H., Deng, F., Castellano, F. N. and Kim, J. H., "Red-to-blue/cyan/green Upconverting Microcapsules for Aqueousand Dryphase Color Tuning and Magnetic Sorting," ACS Photonics, 1, 382-388(2014). https://doi.org/10.1021/ph500036m
  24. Ye, C., Wang, J., Wang, X., Ding, P., Liang, Z. and Tao, X., "A New Medium for Triplet-triplet Annihilated Upconversion and Photocatalytic Application," Phys. Chem. Chem. Phys., 18, 3430(2016). https://doi.org/10.1039/C5CP05288B
  25. Tanaka, K., Inafuku, K. and Chujo, Y., "Environment-responsive Upconversion Based on Dendrimer-supported Efficient Triplet-triplet Annihilation in Aqueous Media," Chem. Commun., 46, 4378-4380(2010). https://doi.org/10.1039/c0cc00266f
  26. Turshatov, A., Busko, D., Baluschev, S., Miteva, T. and Landfester, K., "Micellar Carrier for Triplet-triplet Annihilation-assisted Photon Energy Upconversion in a Water Environment," New. J. Phys., 13(2011).
  27. Wohnhaas, C., Turshatov, A., Mailander, V., Lorenz, S., Baluschev, S., Miteva, T. and Landfester, K., "Annihilation Upconversion in Cells by Embedding the Dye System in Polymeric Nanocapsules," Macromol. Biosci., 11, 772-778(2011). https://doi.org/10.1002/mabi.201000451
  28. Askes, S. H. C., Mora, N. L., Harkes, R., Koning, R. I., Koster, B., Schmidt, T., Krosa, A. and Bonnet, S., "Imaging the Lipid Bilayer of Giant Unilamellar Vesicles Using Red-to-blue Light Upconversion," Chem. Commun., 51, 9137-9140(2015). https://doi.org/10.1039/C5CC02197A
  29. Kwon, O. S., Kim, J. H., Cho, J. K. and Kim, J. H., "Triplet-triplet Annihilation Upconversion in CdS-decorated $SiO_{2}$ Nanocapsules for Sub-bandgap Photocatalysis," ACS Appl. Mater. Interfaces, 7, 318-325(2015). https://doi.org/10.1021/am506233h
  30. Islangulov, R. R., Lott, J., Weder, C. and Castellano, F. N., "Noncoherent Low-power Upconversion in Solid Polymer Films," J. Am. Chem. Soc., 129, 12652-12653(2007). https://doi.org/10.1021/ja075014k
  31. Kim, J. H., Deng, F., Castellano, F. N. and Kim, J. H., "High Efficiency Low-power Upconverting Soft Materials," Chem. Mater., 24, 2250-2252(2012). https://doi.org/10.1021/cm3012414
  32. Singh-Rachford, T. N., Lott, J., Weder, C. and Castellano, F. N., "Influence of Temperature on Low-power Upconversion in Rubbery Polymer Blends," J. Am. Chem. Soc., 131, 12007-12014(2009). https://doi.org/10.1021/ja904696n
  33. Merkel, P. B. and Dinnocenzo, J. P., "Low-power Green-to-blue and Blue-to-UV Upconversion in Rigid Polymer Films," Journal of Luminescence, 129, 303-306(2009). https://doi.org/10.1016/j.jlumin.2008.10.013
  34. Monguzzi, A., Frigoli, M., Larpent, C., Tubino, R. and Meinardi, F., "Low-power-photon Up-conversion in Dual-dye-loaded Polymer Nanoparticles," Adv. Funct. Mater., 22, 139-143(2012). https://doi.org/10.1002/adfm.201101709
  35. Turshatov, A., Busko, D., Kiseleva, N., Grage, S. L., Howard, I. A. and Richards, B. S., "Room-temperature High-efficiency Solidstate Triplet-triplet Annihilation Up-conversion in Amorphous Poly(olefin sulfone)s," ACS Appl. Mater. Interfaces, 9, 8280-8286(2017). https://doi.org/10.1021/acsami.6b12625
  36. Monguzzi, A., Mauri, M., Bianchi, A., Dibbanti, M. K., Simonutti, R. and Meinardi, F., "Solid-state Sensitized Upconversion in Polyacrylate Elastomers," J. Phys. Chem. C, 120, 2609-2614(2016). https://doi.org/10.1021/acs.jpcc.6b00223
  37. Liu, Q., Yang, T., Feng, W. and Li, F., "Blue-emissive Upconversion Nanoparticles for Low-power-excited Bioimaging in Vivo," J. Am. Chem. Soc., 134, 5390-5397(2012). https://doi.org/10.1021/ja3003638
  38. Kamada, K., Sakagami, Y., Mizokuro, T., Fujiwara, Y., Kobayashi, K., Narushima, K., Hirata, S. and Vacha, M., "Efficient Triplet- triplet Annihilation Upconversion in Binary Crystalline Solids Fabricated Via Solution Casting and Operated in Air," Mater. Horiz., 4, 83(2017). https://doi.org/10.1039/C6MH00413J
  39. Oldenburg, M., Turshatov, A., Busko, D., Wollgarten, S., Adams, M., Baroni, N., Welle, A., Redel, E., Woll, C., Richards, B. S. and Howard, I. A., "Photon Upconversion at Crystalline Organic-organic Heterojunctions," Adv. Mater., 28, 8477-8482(2016). https://doi.org/10.1002/adma.201601718
  40. Thevenaz, D. C., Lee, S. H., Guignard, F., Balog, S., Lattuada, M. and Weder, C., Simon, Y. C., "Single-component Upconverting Polymeric Nanoparticles," Macromol. Rapid Commun., 37, 826-832(2016). https://doi.org/10.1002/marc.201500640
  41. Yanai, N. and Kimizuka, N., "Recent Emergence of Photon Upconversion Based on Triplet Energy Migration in Molecular Assemblies," Chem. Commun., 52, 5354(2016). https://doi.org/10.1039/C6CC00089D
  42. Kouno, H., Ogawa, T., Amemori, S., Mahato, P., Yanai, N. and Kimizuka, N., "Triplet Energy Migration-based Photon Upconversion by Amphiphilic Molecular Assemblies in Aerated Water," Chem. Sci., 7, 5224(2016). https://doi.org/10.1039/C6SC01047D
  43. Mahato, P., Yanai, N., Sindoro, M., Granick, S. and Kimizuka, N., "Preorganized Chromophores Facilitate Triplet Energy Migration, Annihilation and Upconverted Singlet Energy Collection," J. Am. Chem. Soc., 138, 6541-6549(2016). https://doi.org/10.1021/jacs.6b01652
  44. Kim, H. I., Weon, S. H., Kang, H. M., Hagstrom, A. L., Kwon, O. S., Lee, Y. S., Choi, W. Y. and Kim, J. H., "Plasmon-enhanced sub-bandgap Photocatalysis via Triplet-triplet Annihilation Upconversion for Volatile Organic Compound Degradation," Environ. Sci. Technol., 50, 11184-11192(2016). https://doi.org/10.1021/acs.est.6b02729
  45. Kim, H. I., Kwon, O. S., Kim, S. J., Choi, W. Y. and Kim, J. H., "Harnessing Low Energy Photons (635 nm) for the Production of $H_{2}O_{2}$ Using Upconversion Nanohybrid Photocatalysts," Energy Environ. Sci., 9, 1063-1073(2016). https://doi.org/10.1039/C5EE03115J
  46. Nattestad, A., Cheng, Y. Y., MacQueen, R. W., Schulze, T. F., Thompson, F. W., Mozer, A. J., Fuckel, B., Khoury, T., Crossley, M. J., Lips, K., Wallace, G. G. and Schmidt, T. W., "Dye-sensitized Solar Cell with Integrated Triplet-triplet Annihilation Upconversion System," J. Phys. Chem. Lett., 4(12), 2073-2078(2013). https://doi.org/10.1021/jz401050u
  47. Cheng, Y. Y., Fuckel, B., MacQueen, R. W., Khoury, T., Clady, R. G. C. R., Schulze, T. F., Ekins-Daukes, N. J., Crossley, M. J., Stannowski, B., Lips, K. and Schmidt, T. W., "Improving the Light-harvesting of Amorphous Silicon Solar Cells with Photo-chemical Upconversion," Energy Environ. Sci., 5, 6953-6959(2012). https://doi.org/10.1039/c2ee21136j
  48. Schulze, T. F., Czolk, J., Cheng, Y. Y., Fuckel, B., MacQueen, R. W., Khoury, T., Crossley, M. J., Stannowski, B., Lips, K., Lemmer, U., Colsmann, A. and Schmidt, T. W., "Efficiency Enhancement of Organic and Thin-film Silicon Solar Cells with Photochemical Upconversion," J. Phys. Chem. C, 116, 22794-22801(2012). https://doi.org/10.1021/jp309636m
  49. Schulze, T. F. and Schmidt, T. W., "Photochemical Upconversion: Present Status and Prospects for Its Application to Solar Energy Conversion," Energy Environ. Sci., 8, 103-125(2015). https://doi.org/10.1039/C4EE02481H
  50. Cheng, Y. Y., Nattestad, A., Schulze, T. F., MacQueen, R. W., Fuckel, B., Lips, K., Wallace, G. G., Khoury, T., Crossley, M. J. and Schmidt, T. W., "Increased Upconversion Performance for Thin Film Solar Cells: a Trimolecular Composition," Chem. Sci., 7, 559-568(2016). https://doi.org/10.1039/C5SC03215F
  51. Li, C., Koenigsmann, C., Deng, F., Hagstrom, A., Schmuttenmaer, C. A. and Kim, J. H., "Photocurrent Enhancement from Solid-state Triplet-triplet Annihilation Upconversion of Low-intensity, Lowenergy Photons," ACS Photonics, 3, 784-790(2016). https://doi.org/10.1021/acsphotonics.5b00694
  52. Cheng, Y. Y., Nattestad, A., Schulze, T. F., MacQueen, R. W., Fuckel, B., Lips, K., Wallace, G. G., Khoury, T., Crossley, M. J. and Schmidt, T. W., "Increased Upconversion Performance for Thin Film Solar Cells: a Trimolecular Composition," Chem. Sci., 7, 559(2016). https://doi.org/10.1039/C5SC03215F
  53. Hagstrom, A. L., Deng, F. and Kim, J.-H., "Enhanced Triplet-triplet Annihilation Upconversion in Dual-sensitizer Systems: Translating Broadband Light Absorption to Practical Solid-state Materials," ACS Photonics, 4, 127-137(2017). https://doi.org/10.1021/acsphotonics.6b00679
  54. Wohnhaas, C., Mailaender, V., Droge, M., Filatov, M. A., Busko, D., Avlasevich, Y., Baluschev, S., Miteva, T., Landfester, K. and Turshatov, A., "Triplet-triplet Annihilation Upconversion Based Nanocapsules for Bioimaging Under Excitation by Red and Deepred Light," Macromol. Biosci., 13, 1422-1430(2013). https://doi.org/10.1002/mabi.201300149
  55. Kwon, O. S., Song, H. S., Conde, J., Kim, H. I., Artzi, N. and Kim, J. H., "Dual-color Emissive Upconversion Nanocapsules for Differential Cancer Bioimaging in vivo," ACS Nano, 10, 1512-1521(2016). https://doi.org/10.1021/acsnano.5b07075
  56. Liu, Q., Wang, W., Zhan, C., Yang, T. and Kohane, D. S., "Enhanced Precision of Nanoparticle Phototargeting in vivo at a Safe Irradiance," Nano Lett., 16, 4516-4520(2016). https://doi.org/10.1021/acs.nanolett.6b01730
  57. Tian, B., Wang, Q., Su, Q., Feng, W. and Li, F., "In vivo Biodistribution and Toxicity Assessment of Triplet-triplet Annihilation-based Upconversion Nanocapsules," Biomaterials, 112, 10-19(2017). https://doi.org/10.1016/j.biomaterials.2016.10.008
  58. Yanai, N., Kozue, M., Amemori, S., Kabe, R., Adachic, C. and Kimizuka, N., "Increased Vis-to-UV Upconversion Performance by Energy Level Matching Between a TADF Donor and High Triplet Energy Acceptors," J. Mater. Chem. C, 4, 6447-6451(2016).
  59. Zhao, W. and Castellano, F. N., "Upconverted Emission from Pyrene and Di-tert-butylpyrene Using Ir(ppy)3 as Triplet Sensitizer," J. Phys. Chem. A, 110, 11440-11445(2006). https://doi.org/10.1021/jp064261s
  60. Jiang, X., Guo, X., Peng, J., Zhao, D. and Ma, Y., "Triplet-triplet Annihilation Photon Upconversion in Polymer Thin Film: Sensitizer Design," ACS Appl. Mater. Interfaces, 8, 11441-11449(2016). https://doi.org/10.1021/acsami.6b01339
  61. Peng, J., Guo, X., Jiang, X., Zhao, D. and Ma, Y., "Developing Efficient Heavy-atom-free Photosensitizers Applicable to TTA Upconversion in Polymer Films," Chem. Sci., 7, 1233-1237(2016). https://doi.org/10.1039/C5SC03245H