DOI QR코드

DOI QR Code

다중회귀분석을 이용한 CLSM의 유동성 및 강도 특성 예측

Estimation of Flowability and Strength in Controlled Low Strength Material Using Multiple Regression Analysis

  • Han, WooJin (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Lee, Jong-Sub (School of Civil, Environmental and Architectural Engineering, Korea University) ;
  • Byun, Yong-Hoon (School of Agricultural Civil & Bio-Industrial Engineering, Kyungpook National University)
  • 투고 : 2017.11.01
  • 심사 : 2017.11.22
  • 발행 : 2017.12.01

초록

현장의 목적에 따라 유동성 채움재(Controlled Low-Strength Material, CLSM)의 유동성과 재령일에 따른 강도 특성은 다르게 요구될 수 있으며, 본 연구에서는 현장에 맞는 유동성 채움재의 배합설계가 가능하도록 다중회귀분석을 이용하여 유동성 채움재의 배합 비율로써 강도 및 플로우 특성을 예측하고자 하였다. CSA 팽창재, 보통 포틀랜드 시멘트, 플라이애시, 모래, 실트, 물 그리고 급결제로 구성된 유동성 채움재의 배합비에 따라 플로우값 그리고 12시간 및 7일 강도를 측정하였다. 유동성 채움재의 재료비율을 독립변수로, 측정된 각 특성을 종속변수로 선정 후, 통계 분석 프로그램인 SPSS Statistics 23을 통하여 다중회귀분석을 수행하였으며, 독립변수항이 1~3차식으로 이루어진 회귀모형의 회귀계수를 추정하였다. 회귀분석 결과, 플로우값은 3차식의 모형, 12시간 및 7일 강도는 1차식의 모형으로 설명하는 것이 가장 적절한 것으로 판단하였다. 본 논문에서 제안된 CLSM의 플로우값 및 강도 특성에 대한 회귀모형을 통하여, 실험을 수행하기 전, 요구되는 특성에 맞는 배합비를 추정할 수 있을 것으로 기대된다.

Flowability and strength with curing time of controlled low-strength material (CLSM) are required differently according to the construction purpose. In this paper, the flowability and strength were estimated from the mixing ratio of CLSM using multiple regression analysis to design the CLSM. The flow values and strength at 12 hrs and 7days were measured in accordance with the mixing ratio of CLSM which consists of 7 different materials, such as CSA expansive agent, ordinary Portland cement, fly ash, sand, silt, water, and accelerator. The multiple regression was performed with the proportions of each material of CLSM as independent variables and the measured properties as dependent variables using SPSS Statistics 23 which is a statistical analysis program. The regression coefficients were estimated from the first to third order equation models for the materials. From the results, the third order model for the flow values and the first order models for 12hrs and 7days strength are the most appropriate models. This study suggests that the mixing ratio required for constructions may be effectively estimated from the regression models about the characteristics of CLSM, before performing experimental tests.

키워드

참고문헌

  1. ACI Committee 116 (2000), Cement and concrete terminology, American Concrete Institute, ACI 116R-00, pp. 1-73.
  2. ACI Committee 229 (1999), Controlled low-strength materials (CLSM), American Concrete Institute, 229R-99, pp. 1-15.
  3. ASTM D4832 (2002), Standard test method for preparation and testing of controlled low strength material (CLSM) Test Cylinders, American Society for Testing Materials, pp. 1-5.
  4. ASTM D6103 (2004), Standard test method for flow consistency of controlled low-strength material (CLSM), American Society for Testing and Materials, pp. 1-5.
  5. Cheon, S. H., Jeong, S. S., Lee, D. S. and Kim, D. H. (2006), Mechanical characteristics of accelerated plowable backfill materials using surplus soil for underground power utilities, Journal of the Korean Society of Civil Engineers, Vol. 26, No. 5, pp. 303-312 (in Korean).
  6. Han, W. J., Lee, J. S., Cho, S. D., Kim, J. and Byun, Y. H. (2015), Study on correlation between compressive strength and compressive wave velocity for CLSM according to curing time, Journal of the Korean Geo-Environmental Society, Vol. 16, No. 11, pp. 5-11 (in Korean).
  7. Hwang, E. S., Chung, D. S., Kim, K. S., Lee, M. S. and Song, Y. S. (2013), Characteristics analysis of mudstone weathered soils in the landslide area using statistical technique, Journal of the Korean Geosynthetics Society, Vol. 12, No. 3, pp. 31-41 (in Korean). https://doi.org/10.12814/jkgss.2013.12.3.031
  8. Hwang, I. S. (2016), Analysis of correlation between physical properties and consolidation parameters of clay in Han and Geum river basin, Ph.D. Thesis, Chungbuk National University, pp. 149 (in Korean).
  9. Kang, S. B. (2012), Correlation Analysis of Soil Parameters of Marine Clay in Busan and Kwangyang, Ph.D. Thesis, Chungbuk National University, pp. 144 (in Korean).
  10. Kim, K. L. (2005), An easy interpretation of characteristics of coefficients in multiple regression, Master's thesis, Chungnam National University, pp. 44 (in Korean).
  11. Kong, J. Y., Kang, H. N. and Chun, B. S. (2010), Characteristics of unconfined compressive strength and flow in controlled low-strength materials made with coal ash, Journal of Korean Geotechnical Society (KGS), Vol. 26, No. 1, pp. 75-83 (in Korean).
  12. Lee, J. G., Chang, B. S., Kim, Y. S., Suk, J. W. and Moon, J. S. (2013), Risk assessment for large-scale slopes using multiple regression analysis, Journal of Korean Geotechnical Society (KGS), Vol. 29, No. 11, pp. 99-106 (in Korean). https://doi.org/10.7843/kgs.2013.29.11.99
  13. Yoon, G. L., Kim, B. T. and Jeon, S. S. (2004), Empirical correlations of compression index for marine clay from regression analysis, Canadian Geotechnical Journal, Vol. 41, No. 6, pp. 1213-1221. https://doi.org/10.1139/t04-057
  14. Yoon, S. W. and Rho, J. S. (2004), Preparation and application of CSA expansive additives using industrial wastes, Journal of the Korea Concrete Institute, Vol. 16, No. 3, pp. 369-374 (in Korean). https://doi.org/10.4334/JKCI.2004.16.3.369