DOI QR코드

DOI QR Code

Analysis of stealth design for naval vessels with wide band metamaterials

함정의 스텔스 설계를 위한 광대역 메타물질 적용 연구

  • Hwang, Joon-Tae (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Kwon, Hyun-Wung (Department of Naval Architecture and Ocean Engineering, Koje College) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University)
  • Received : 2017.08.18
  • Accepted : 2017.10.21
  • Published : 2017.11.30

Abstract

When it comes to naval surface warfare, the probability of detection is an important factor in survivability and the Radar Cross Section(RCS) is a major parameter. In this paper, the RCS reduction technology of the Radar Absorbing Material(RAM) method is carried out for the general frequency range for naval warfare. We set the analysis model with the simplified ship model and the wide band metamaterial which is high-tech radar absorbing materials is selected for the RAM method. The modeling of the wide band metamaterial composed of an MIK surface which has the wide band resonant properties and flexible substance and the electromagnetic absorptions and reflections of the wide band metamaterial has been simulated to explore the performance. Also, the wide band metamaterial is compared with the paint absorber to analyze RCS reduction in terms of RCS values.

현대 해상전에서 함정의 피탐지율은 생존성에 직접적인 요소이며, 레이다 반사면적(RCS; Radar Cross Section)은 피탐지율에 있어서 주요 변수 중 하나이다. 본 논문에서는 RCS 감소기법 중 하나인 레이다 신호를 흡수하는 특수 재질을 통한 RCS 감소 기법인 RAM(Radar Absorbing Materials) 방법을 이용하여 위협 주파수 대역의 RCS 해석을 수행하였다. 해석 모델은 모형선 모델을 이용하였고, RAM 기법에 적용될 전파흡수체는 최신 전파흡수체 기술인 광대역 메타물질을 적용하였다. 광대역 메타물질은 광대역에서 공진주파수를 갖는 MIK 공진구조와 유연성 기판을 이용하여 모델링을 수행하였고, 광대역 메타물질의 성능 분석을 위하여 전자기파의 흡수율과 반사율에 대한 모의실험을 수행하였다. 또한, 광대역 메타물질 적용에 따른 레이다 반사면적 감소효과를 분석하기 위하여 기존 전파흡수체와의 비교를 통하여 RCS 감소 효과를 분석하였다.

Keywords

References

  1. J. T. Hwang, "Development of Stealth Design Systems for Naval Ship," MS. dissertation, Seoul National Univ. pp.61-64, 2016.
  2. E. Michielssen, S. M. Sajer, S. Ranjithan and R. Mittra, "Design of lightweight, broad band microwave absorbers using genetic algorithms," IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 6/7, pp. 1024-1031, Jun/Jul. 1993. https://doi.org/10.1109/22.238519
  3. D. S. Weile, E. Michielssen and D. E. Goldberg, "Genetic algorithm design of pareto optimal broadband microwave absorbers," IEEE Transactions on Electromagnetic Compatibility, vol. 38, no. 3, pp. 518-525, Aug. 1995.
  4. K. J. Vinoy and R. M. Jha, Radar Absorbing Materials: From Theory to Design and Characterization, Kluwer Academic Publishers, Norwell, Boston, USA, 1996.
  5. R. Shelby, D. Smith, and S. Schultz, "Experimental verification of a megative index of refraction," Science 06 Apr 2001, vol. 292, no. 5514, pp. 77-79, Apr. 2001. https://doi.org/10.1126/science.1058847
  6. H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, D. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, and R. D. Averitt, "Highly flexible wide angle of incidence terahertz metamaterial absorber : Design, fabrication and Characterization," Physical Review B, vol.78, 241103, Dec. 2008. https://doi.org/10.1103/PhysRevB.78.241103
  7. Z. C. Yong, W. Ying, N.Yan, Z. G.Rong, X. Xuan, and W. Xian, "Design, fabrication and measurement of a broadband polarization-insensitive metamaterial absorber based on lumped elements," Journal of applied physics, vol. 111, no. 4, 044902, Feb. 2012. https://doi.org/10.1063/1.3684553
  8. Y. N. Fan, Y. Z. Cheng, Y. M. Deng, and R. Z. Gong, "Absorbing Performance of Ultrathin Wide-Band Planar Metamaterial Absorber," IEEE Antennas, Propagation and EM Theory, pp 672-676, Oct. 2012.
  9. H. W. Kwon, S. Y. Hong, and J. H. Song, "Development of radar cross section analysis program for complex structures," Journal of the Korean Society of Marine Environment & Safety, vol. 20, no. 4, pp. 435-442, Aug. 2014. https://doi.org/10.7837/kosomes.2014.20.4.435
  10. D. H. Lee, and W. S. Park, "Extraction of Material Parameters for Metamaterials Using a Full-Wave Simulator," IEEE Antennas and Propagation Magazine, vol. 55, no. 5, pp. 202-211, Oct. 2013. https://doi.org/10.1109/MAP.2013.6735515
  11. S. H. Suk, "RCS Prediction of complex targets," MS. Dissertation, POSTECH, pp. 69-70, 2001.
  12. J. T. Hwang, S. Y. Hong, H. W. Kwon, J. C. Kim, and J. H. Song, "Analysis of Radar Cross Section for Naval Vessels with Metamaterials and Radar Absorbing Materials," Journal of the Korean Society of Marine Environment & Safety, vol. 21, no. 6, pp. 737-743, Dec. 2015. https://doi.org/10.7837/kosomes.2015.21.6.737