DOI QR코드

DOI QR Code

하구둑이 낙동강 하구 표층 퇴적물 생규소(BSi) 분포에 미치는 영향

The Impact of Nakdong Estuarine Barrage on Distribution of Biogenic Silica (BSi) in Surface Sediment

  • KIM, YUNJI (Department of Oceanography, Pusan National University) ;
  • AN, SOONMO (Department of Oceanography, Pusan National University)
  • 투고 : 2016.07.13
  • 심사 : 2016.12.11
  • 발행 : 2017.11.30

초록

본 연구는 하구둑으로 인한 육상으로 부터의 규소(Si) 플럭스의 변화가 하구 및 연안생태계에 미치는 영향을 알아보기 위한 사전연구로, 하구둑이 존재하지 않는 섬진강 하구와 하구둑이 존재하는 낙동강 하구 표층퇴적물 및 퇴적물 코어 분석을 통해 하구둑이 입도와 유기물, 그리고 BSi 분포에 어떠한 영향을 미쳤는지 알아보았다. 2014년 11월과 2015년 3월 낙동강과 섬진강 표층 퇴적물의 입도, 유기물, BSi 분포를 조사하였고, 퇴적물 코어를 이용하여 낙동강 하구둑 건설 전 후의 퇴적상의 변화를 알아보았다. 전반적으로 BSi 농도 변화는 퇴적환경에 따른 입도 변화와 좋은 상관관계를 보였다. 자연하구인 섬진강 하구 표층 퇴적물은 상류에서 하류로 갈수록 니질(실트질과 점토질), 유기물, BSi 함량이 점진적으로 증가하였으며, 특히 조석의 영향이 미치는 중부하구 정점부터 그 변화가 뚜렷하게 나타났다. 낙동강 하구 표층 퇴적물은 하구둑을 기준으로 내측과 외측의 입도와 유기물 분포가 뚜렷한 차이를 보였다. 하구둑 내측은 정점 간 차이가 크지 않았으나, 우안배수문 내측은 높은 니질, 유기물, BSi 함량을 보여 하구둑에 의한 물질 정체 현상이 두드러지게 나타났다. 하구둑 외측은 전체적으로 사주 쪽으로 갈수록 표층 퇴적물 내 니질과 유기물, BSi 함량이 감소하는 경향을 보였다. 낙동강 퇴적물 코어 분석 결과, 하구둑 건설 이후 입도와 유기물, BSi 함량이 급격히 감소하였으며, 대규모 공사에 의한 퇴적물 교란 및 하구둑에 의한 물질 유입량 감소가 원인으로 보인다. 우안배수문 인근 정점(ND2) 코어는 을숙도 대교 건설과 우안배수문 증설의 영향으로 약 38 cm 부근에서 퇴적상이 한 번 더 급격히 변하였다. 하구둑으로 인한 물리적 환경의 변화가 BSi 분포에 미치는 영향을 제거하고 정체효과를 보기 위하여 $BSi_{exc}$를 구한 결과, 자연하구인 섬진강 하구는 연구지역의 상류에서 하류로 갈수록 $BSi_{exc}$가 점차 감소하였으며, 중부하구 정점부터 음의 값을 보였다. 낙동강 하구는 하구둑을 기준으로 내측은 양의 값을, 외측은 음의 값을 보였다. 이는 하구둑에 의한 외측의 규소 플럭스 감소와 내측과 외측의 규조 종조성의 급격한 변화 등을 원인으로 볼 수 있다. 우안배수문 외측 정점(ND2) 코어의 $BSi_{exc}$는 하구둑 건설 이후 일정한 음의 값을 보였으며, 이는 낮은 유속으로 인한 니질 퇴적의 증가가 원인으로 판단된다. 그러나 하구둑 건설 이후 $BSi_{exc}$가 크게 변동하였으며, 이는 을숙도 대교 및 우안배수문 건설로 인한 것으로 추정된다.

Current study is a part of the efforts to assess the estuarine barrage effects on the coastal ecosystem induced by the Si flux changes. Surface sediments from Seomjin and Nakdong estuary and sediment cores from Nakdong estuary was analysed to investigate the effect of estuarine barrage on the distribution of grain size, organic matter (loss on ignition: LOI) and biogenic silica (BSi). The samples of Seomjin estuary were collected in March, 2015 and those of Nakdong estuary were collected in November, 2014. Generally, the longitudinal distribution of grain size, LOI and BSi in Seomjin estuary, natural estuary, was gradually changed. However mud (silt and clay), LOI and BSi increased from station mid-estuary where tide reaches year-round. The distribution of grain size, LOI and BSi in Nakdong estuary, however, were entirely different between inside and outside of estuarine barrage. The mud percentage and LOI were low and consistent in inside of the barrage except R05, inside of right gate, yet those of outside of the barrage were higher and varied by adjacent sluices. Mud, LOI and BSi of ND1 and ND2 decreased immediately after the construction of Nakdong estuarine barrage due to disturbance of sediment and decrease of sediment supply. To exclude the physical effects by the barrage, BSi excess ($BSi_{exc}$) was calculated using regression equation of BSi-LOI and BSi-mud of Seomjin estuary. $BSi_{exc}$ of Seomjin estuary decreased gradually from upper estuary to lower estuary. $BSi_{exc}$ of Nakdong estuary were positive in inside of the barrage and negative in outside of the barrage. BSi retention and shift of species composition of diatom by the barrage would affect $BSi_{exc}$ distribution. Before the construction of Nakdong estuarine barrage, $BSi_{exc}$ of ND2 was negative and consistent owing to high mud sedimentation. After the construction, $BSi_{exc}$ of ND2, however, fluctuated due to continuous disturbance of sediment due to construction of Eulsuk bridge and East gate.

키워드

참고문헌

  1. An, S., 2005. Seasonal variations of sediment oxygen demand and denitrification in Kanghwa tidal flat sediments. J. of the Korean Society of Oceanography, 10(1): 47-55.
  2. Bae, H.M., 2002. Environment design of an Esutary dike on the Youngsan-River. J. of the Korean Institute of Landscape Architecture, 30(1): 44-51.
  3. Bologa, A.S., N. Bodeanu, A. Petran, A. Tiganus and Y. Zaitsev, 1995. Major modifications of the Black Sea benthic and planktonic biota in the last three decades. Bulletin de l'Intstitut Oceanographique, Monaco, 15: 85-10.
  4. Bouvier, T., S. Becquevort and C. Lancelot, 1998. Biomass and feeding activity of phagotrophic mixotrophs in the northwestern Black Sea during the summer 1995. Hydrobiologia, 363: 289-301.
  5. Bodeneau, N. 1992. Algal blooms and the development of the main phytoplanktonic species at the Romanian Black Sea littoral in conditions of intensification of the eutrophication process. In: Marine coastal eutrophication: The response of marine transitional systems to human impact-Problems and perspectives for restoration. ELSEVIER, 891-906 pp.
  6. Burt, N. and A. Rees, 2001. Guidelines for the assessment and planning of estuarine barrages. Thomas Telford Publishing, 483 pp.
  7. Chang, H.D. and J.K. Oh, 1991. Depositional sedimentary environments in the Han River estuary and around the Kyunggi bay posterior to the Han River's deveopments. J. of the Oceanological Society of Korea, 26(1): 13-23.
  8. Choi, J.Y., H.Y. Choi and M.S. Seo, 1995. Physical and sedimentological changes in the Keum estuary after the gate-close of Keum River weir. J. of the Korean Society of Oceanography, 30(4): 262-270.
  9. Cociasu, A., L. Dorogan, C. Humborg, and L. Popa, 1996. Longterm ecological changes in romaniam coastal waters of the black sea. Marine Pollution Bulletin, 32(1): 32-38. https://doi.org/10.1016/0025-326X(95)00106-W
  10. Conley, D.J., C.L. Shelske and E.F. Stoemer, 1993. Modification of the biogeochemical cycle of silica with eutrophication. Mar. Ecol. Prog. Ser., 101: 179-192. https://doi.org/10.3354/meps101179
  11. Conley, D.J., S.S. Kilham and E. Theriot, 1989. Differences in silica content between marine and freshwater diatoms. Limno. Oceanogr., 34(1): 205-213. https://doi.org/10.4319/lo.1989.34.1.0205
  12. Del Amo, Y. and M.A. Brzezinski, 1999. The chemical form of dissolved Si taken up by marine diatoms. J. of Phycology, 35: 1162-1170. https://doi.org/10.1046/j.1529-8817.1999.3561162.x
  13. DeMaster, D.J., 1981. The supply and accumulation of silica in the marine environment. Geochimica Et Cosmochimica Acta, 45(10): 1715-1732. https://doi.org/10.1016/0016-7037(81)90006-5
  14. Elliott, M. and D.S. McLusky, 2002. The need for definitions in understanding estuaries. Esturine, Coastal and Shelf Science, 55: 815-827. https://doi.org/10.1006/ecss.2002.1031
  15. Friedl, G. and A. Wuest, 2002. Disrupting biogeochemical cycles-consequences of damming. Aquatic Sciences, 64(1): 55-65. https://doi.org/10.1007/s00027-002-8054-0
  16. Guillard, R.R.L. and P. Kilham, 1978. The ecology of marine planktonic diatoms. In: The biology of diatoms. Univiersity of California Press, pp. 372-469.
  17. Humborg, C., V. Ittekkot, A. Cociasu and B.V. Bodungen, 1997. Effects of danube river dam on black sea biogeochemistry and ecosystem structure. Nature, 386: 385-388. https://doi.org/10.1038/386385a0
  18. Jeong, K.S., D.K. Kim and G.J. Joo, 2007. Delayed Influence of dam storage and discharge on the determination of seasonal proliferations of microcystis aeruginosa and stephanodiscus hantzschii in a regulated river system of the lower Nakdong River (South Korea). Water Research, 41: 1269-1279. https://doi.org/10.1016/j.watres.2006.11.054
  19. Chung, M.H. and S.H. Yoon, 2013. Temporal and spatial variability of phytoplankton communities in the Nakdong River Estuary and coastal area, 2011-2012. J. of the Korean Society of Oceanography, 18(4): 214-226.
  20. Cho, C.Y., S.W. Choi, D.I. Lee and K.U. Eom, 2005. Design of Myeong Gi Bridge by private investment project. Korean Society of Steel Construction, 586-591 pp.
  21. Kim, J.K., G.I. Kwak and J.H. Jeong, 2008. Three-dimensional mixing characteristics in Seomjin River Estuary. J. of the Korean Society, 11(3): 164-174.
  22. Kim, S.J., D.C. Kim, H.I. Yi and I.C. Shin, 1996. Changes in sedimentary process and distribution of benthic foraminifera in the eastern part of Kwangyag Bay, South Sea of Korea. J. of the Korean Society of Oceanography, 1(1): 32-45.
  23. Kim, S.Y. and B.K. Lee, 2009. The Distribution and behaviors of suspended matters in Seomjin River Estuary-compared with rainy and wet season-. J. of Korean Society on Water Quality, 25(6): 935-942.
  24. Kim, S.Y. and J.S. Ha, 2001. Sedimentary facies and environmental changes of the Nakdong River Estuary and adjacent coastal area. J. Korean Fish. Soc., 34(3): 268-278.
  25. Kwon, K.Y., C.H. Moon, C.K. Kang and Y.N. Kim, 2002. Distribution of particulate organic matters along the salinity gradients in the Seomjin River Estuary. J. Korean Fish. Soc., 35(1): 86-96.
  26. Lee, K.H., B.H. Rho, H.J. Cho and C.H. Lee, 2011. Estuary classification based on the characteristics of geomorphological features, natural habitat distributions and land uses. J. of the Korean Society of Oceanography, 16(2): 53-69.
  27. Lee, Y.S., J.S. Lee, R.H. Jung, S.S. Kim, W.J. Go, K.Y. Kim and J. Park, 2001. Limiting nutrient on phytoplankton growth in Gwangyang Bay. J. of the Korean Society of Oceanography, 6(3): 201-210.
  28. Liu, S.M., X.W. Ye, J. Zhang and Y.F. Zhao, 2002. Problems with biogenic silica measurement in marginal seas. Marine Geology, 192(4): 383-392. https://doi.org/10.1016/S0025-3227(02)00531-5
  29. Norris, A.R. and C.T. Hackney, 1999. Silica content of a mesohaline tidal marsh in north carolina. Estuarine. Coastal and Shelf Science, 49(4): 597-605. https://doi.org/10.1006/ecss.1999.0506
  30. Meade, R.H. and R.S. Parker, 1985. Sediment in rivers of the United States. US Geological Survey Water-Supply Paper, 2275: 49-60.
  31. Mehta, A.J., 1991. Understanding fluid mud in a dynamic environment. Geo-Marine Letters, 11: 113-118. https://doi.org/10.1007/BF02430995
  32. Ministry of environment (MOE), 2015a. A study for the restoration ecosystem of Nakdong River Estuary. Pusan National University.
  33. Ministry of environment (MOE), 2015b. The operating management of discharge of Yeongngsan River and Seomjin River. Yeongsan River Environment Research center.
  34. Moon, C.H. and H.J. Choi, 1991. Studies on the environmental characteristics and phytoplankton community in the Nakdong River Estuary. J. of the Oceanological Society of Korea, 26(2): 144-154.
  35. Na, C.K. and C.I. Son, 2005. Groundwater quality and pollution characteristics at Seomjin River Basin: Pollution Source and Risk Assessment. Econ. Environ. Geol., 38(3): 261-272.
  36. Oh, G.H., 1999. Landform Changes of Terminal Area of the Nagdong River Delta, Korea. The Korean Journal of Quaternary Research, 13(1): 67-78.
  37. Park, M.O., S.S. Kim, S.G. Kim, J. Kwon, S.M. Lee and Y.W. Lee, 2012. Factors controlling temporal-spatial variations of marine environment in the Seomjin River Estuary through 25-hour continuous monitoring. J. of the Korean Society for Marine Environmental Engineering, 15(4): 314-322. https://doi.org/10.7846/JKOSMEE.2012.15.4.314
  38. Park, S., J, Lee, J.U. Choi, N. Heo and S. An, 2016. Study on the long-term changes in water quality and benthic ecology and evaluation on effect of the barrage in Nakdong River Estuary. J. of Wetland Research, 18(1): 58-67. https://doi.org/10.17663/JWR.2016.18.1.058
  39. Ragueneau, O., D.J. Conley, A. Leynaert, S,N. Longphuirt and C,P. Slomp, 2006. Response of coastal ecosystems to anthropogenic perturbations of silica cycling. in: the silicon cycle: human perturbations and impacts on aquatic systems, edited by V. Ittekkot, D. Unger, C. Humborg and N.T. An, Island Press Washington DC, 197-213 pp.
  40. Ross, M.A., C.P. Lin and A.J. Mehta, 1987. On the definition of fluid mud, in: hydraulic engineering, American Society of Civil Engineers, New York, 231-236 pp.
  41. Ryu, C.R. and S.D, Chang, 1979. Tide and tidal current in the estuary of the Nakdong River. J. of the Oceanological Society of Korea, 13: 71-77.
  42. Sommer, U., 1988. Growth and survival strategies of planktonic diatoms. in: growth and reproductive strategies of freshwater phytoplankton, edited by C.D. Craig, Cambridge University Press, Cambridge, 227-260 pp.
  43. Teal, J.M. 1962. Energy flow in the salt marsh ecosystem of Georgia. Ecology, 43: 614-624. https://doi.org/10.2307/1933451
  44. Teodoru, C., A. Dimopoulos and B. Wehrli, 2006. Biogenic silica accumulation in the sediments. Aquatic sciences, 68(4): 469-481. https://doi.org/10.1007/s00027-006-0822-9
  45. Walling, D.E. and D. Fang, 2003. Recent trends in the suspended sediment loads of the world's rivers. Global and Planetary Change, 39: 111-126. https://doi.org/10.1016/S0921-8181(03)00020-1
  46. Wiilams, J.R., Dellapenna, T.M. and G.H. Lee, 2013. Shifts in depositional environments as a natural response to anthropogenic alterations Nakdong Estuary, South Korea. Marine Geology, 343: 47-61. https://doi.org/10.1016/j.margeo.2013.05.010
  47. Yang, H.S., D.W. Hwang and G. Kim, 2002. Factors controlling excess radium in the Nakdong River Estuary, Korea : submarine groundwater discharge versus desorption from riverine particles. Marine Chemistry, 78: 1-7. https://doi.org/10.1016/S0304-4203(02)00004-X

피인용 문헌

  1. Changes in sedimentary structure and elemental composition in the Nakdong Estuary, Korea vol.23, pp.3, 2017, https://doi.org/10.17663/jwr.2021.23.3.213