DOI QR코드

DOI QR Code

Adsorption Characteristics of Acetone, Benzene, and Metylmercaptan by Activated Carbon Prepared from Waste Citrus Peel

폐감귤박으로 제조한 활성탄에 의한 아세톤, 벤젠 및 메틸메르캅탄의 흡착특성

  • Kam, Sang-Kyu (Department of Environmental Engineering, Jeju National University) ;
  • Kang, Kyung-Ho (Livestock Division, Jeju Special Self-Governing Province) ;
  • Lee, Min-Gyu (Department of Chemical Engineering, Pukyong National University)
  • Received : 2017.07.31
  • Accepted : 2017.10.01
  • Published : 2017.12.10

Abstract

Activated carbons were prepared from waste citrus peels using KOH, NaOH, and $ZnCl_2$ as activating chemicals. They were prepared at optimal conditions including the chemical ratio of 300%, activation time of 1.5h, and activation temperature of $900^{\circ}C$ for KOH, $700^{\circ}C$ for NaOH, and $600^{\circ}C$ for $ZnCl_2$, which were named as ACK, ACN, and ACZ, respectively. Using the activated carbons, their adsorption characteristics for three target gases such as acetone, benzene, and methylmercaptan (MM) were carried out in a batch reactor. The adsorption behavior of activated carbons for three target gases followed the Freundlich model better than the Langmuir. And the experimental kinetic data followed a pseudo-second-order kinetic model more than pseudo-first-order one. Following the intraparticle diffusion model suggested that the external mass transfer and particle diffusion were occurred simultaneously during the adsorption process.

활성화제로 KOH, NaOH 및 $ZnCl_2$를 사용하여 폐감귤박으로부터 활성탄을 제조하였다. 최적조건(활성화제의 침적비율 300%, 활성화 온도 : KOH의 경우 $900^{\circ}C$, NaOH의 경우 $700^{\circ}C$, $ZnCl_2$의 경우 $600^{\circ}C$, 활성화 시간 1.5 h)에서 제조한 활성탄을 각각 ACK, ACN 및 ACZ로 명명하였다. 이들 활성탄을 사용하여 회분식 반응기에서 아세톤, 벤젠 및 메틸메르캅탄(MM) 등의 3가지 대상가스에 대한 흡착 특성을 검토하였다. 이들 활성탄에 의한 3가지 대상 가스의 흡착은 Langmuir 모델식보다는 Freundlich 모델식에 더 부합되는 것으로 나타났다. 그리고 흡착 속도실험결과는 유사 1차 속도식보다는 유사 2차 속도식에 잘 부합하였으며, 입자 내 확산 모델 결과는 흡착 과정에서 외부물질전달과 입자확산이 동시에 일어나는 것을 시사해 주었다.

Keywords

References

  1. J. W. Jeon, D. H. Lee, J. S. Seo, S. K. Kam, and M. G. Lee, Photocatalytic oxidation characteristics of benzene, toluene, and ethylbenzene by UV reactor inserted $TiO_2$-coated porous screw, Proc. Korean Environ. Sci. Soc. Conf., 22, 750-753 (2013).
  2. R. M. Alberici and W. F. Jardim, Photocatalytic destruction of VOCs in the gas-phase using titanium dioxide, Appl. Catal. B, 14, 55-68 (1997). https://doi.org/10.1016/S0926-3373(97)00012-X
  3. C. H. Weng, Y.-T. Lin, and T.-W. Tzeng, Removal of methylene blue from aqueous solution by adsorption onto pineapple leaf powder, J. Hazard. Mater., 170, 417-424 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.080
  4. F. I. Khan and A. K. Ghoshal, Removal of volatile organic compound from polluted air, J. Loss Prev. Process Ind., 13, 527-545 (2000). https://doi.org/10.1016/S0950-4230(00)00007-3
  5. Q. S. Liu, T. Zheng, P. Wang, J. P. Jiang, and N. Li, Adsorption isotherm, kinetic and mechanism studies of some substituted phenols on activated carbon fibers, Chem. Eng. J., 157, 348-356 (2010). https://doi.org/10.1016/j.cej.2009.11.013
  6. M. Kazemipour, M. Ansari, S. Tajrobehkar, M. Majdzadeh, and H. R. Kermani, Removal of lead, cadmium, zinc, and copper from industrial wastewater by carbon developed from walnut, hazelnut, almond, pistachio shell, and apricot stone, J. Hazard. Mater., 150, 322-327 (2008). https://doi.org/10.1016/j.jhazmat.2007.04.118
  7. A. Ahmad and B. Hameed, Reduction of COD and color of dyeing effluent from a cotton textile mill by adsorption onto bamboo- based activated carbon, J. Hazard. Mater., 172, 1538-1543 (2009). https://doi.org/10.1016/j.jhazmat.2009.08.025
  8. N. El Hannafi, M. A. Boumakhla, T. Berrama, and Z. Bendjama, Elimination of phenol by adsorption on activated carbon prepared from the peach cores: modelling and optimisation, Desalination, 223, 264-268 (2008). https://doi.org/10.1016/j.desal.2007.01.229
  9. A. Khaled, A. El Nemr, A. El-Sikaily, and O. Abdelwahab, Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies, J. Hazard. Mater., 165, 100-110 (2009). https://doi.org/10.1016/j.jhazmat.2008.09.122
  10. M. Valix, W. H. Cheung, and G. McKay, Preparation of activated carbon using low temperature carbonisation and physical activation of high ash raw bagasse for acid dye adsorption, Chemosphere, 56, 493-501 (2004). https://doi.org/10.1016/j.chemosphere.2004.04.004
  11. N. Kannan and M. M. Sundaram, Kinetics and mechanism of removal of methylene blue by adsorption on various carbons - A comparative study, Dyes Pigm., 51, 25-40 (2001). https://doi.org/10.1016/S0143-7208(01)00056-0
  12. C. A. Basar, Applicability of the various adsorption models of three dyes adsorption onto activated carbon prepared waste apricot, J. Hazard. Mater., B135, 232-241 (2006).
  13. R. L. Tseng, S. K. Tseng, and F. C. Wu, Preparation of high surface area carbons from corncob using KOH combined with $CO_2$ gasification for the adsorption of dyes and phenols from water, Colloids Surf. A, 279, 69-78 (2006). https://doi.org/10.1016/j.colsurfa.2005.12.042
  14. A. Aygun, S. Yenisoy-Karakas, and I. Duman, Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties, Microporous Mesoporous Mater., 66, 189-195 (2003). https://doi.org/10.1016/j.micromeso.2003.08.028
  15. S. S. Kim, J. H. Kim, and S. W. Park, Adsorption analysis of benzene vapor in a fixed-bed of granular activated carbon, Korean Chem. Eng. Res., 47(4), 495-500 (2009).
  16. J. K. Lim, S. W. Lee, S. K. Kam, D. W. Lee, and M. G. Lee, Adsorption characteristics of toluene vapor in fixed-bed activated carbon column, J. Environ. Sci. Int., 14, 61-69 (2005). https://doi.org/10.5322/JES.2005.14.1.061
  17. H. U. Lee, J. S. Kim, C. Han, H. K. Song, and B. K. Na, Adsorption and desorption characteristics of MEK with activated carbon and polymer adsorbents, Korean Chem. Eng. Res., 37, 120-125 (1999).
  18. M. Popescu, J. P. Joly, J. Carre, and C. Danatoiu, Dynamical adsorption and temperature-programmed desorption of VOCs (toluene, butyl acetate and butanol) on activated carbons, Carbon, 41, 739-748 (2003). https://doi.org/10.1016/S0008-6223(02)00391-3
  19. Y. C. Chiang, P. C. Chiang, and C. P. Huang, Effect of pore structure and temperature on VOC adsorption on activated carbon, Carbon, 39, 523-534 (2001). https://doi.org/10.1016/S0008-6223(00)00161-5
  20. Z. Huang, F. Kang, K. Liang, and J. Hao, Breakthrough of methylketone and benzene vapors in activated carbon fiber beds, J. Hazard. Mater., B98, 107-115 (2003).
  21. J.-H. Tsai, H.-M. Chiang, G.-Y. Huang, and H.-L. Chiang, Adsorption characteristics of acetone, chloroform and acetonitrile on sludge derived adsorbent, commercial granular activated carbon and activated carbon fibers, J. Hazard. Mater., 154, 1183-1191 (2008). https://doi.org/10.1016/j.jhazmat.2007.11.065
  22. S. Bashkova, A. Bagreev, and T. Bandosz, Adsorption of methyl mercaptan on activated carbons, Environ. Sci. Technol., 36, 2777-2782 (2002). https://doi.org/10.1021/es011416v
  23. S. W. Lee, Y. S. Na, C. D. An, and M. G. Lee, Comparison of adsorption and desorption characteristics of acetone vapor and toluene vapor on activated carbons according to pore structure, J. Environ. Sci. Int., 21, 1195-1201 (2012). https://doi.org/10.5322/JES.2012.21.10.1195
  24. A. J. Fletcher, Y. Yuzak, and K. M. Thomas, Adsorption and desorption kinetics for hydrophilic and hydrophobic vapors on activated carbon, Carbon, 44, 989-1004 (2006). https://doi.org/10.1016/j.carbon.2005.10.020
  25. M. G. Lee, S. W. Lee, and S. H. Lee, Comparison of vapor adsorption characteristics of acetone and toluene based on polarity in activated carbon fixed-bed reactor, Korean J. Chem. Eng., 23, 773-778 (2006). https://doi.org/10.1007/BF02705926
  26. S. W. Lee, M. G. Lee, and S. B. Park, Comparison of surface characteristics and adsorption characteristics of activated carbons changed by acid and base modification, J. Environ. Sci. Int., 17, 565-571 (2008). https://doi.org/10.5322/JES.2008.17.5.565
  27. M. A. Ahmad, W. M. A. Wan Daud, and M. K. Aroua, Adsorption kinetics of various gases in carbon molecular sieves (CMS) produced from palm shell, Colloids Surf. A, 312, 131-135 (2008). https://doi.org/10.1016/j.colsurfa.2007.06.040
  28. M. K. Hafshejani, A. Langari, and M. Khazaei, Adsorption of acetone from polluted air by activated carbon derived from low cost materials, Life Sci. J., 10, 3658-3661 (2013).
  29. S. K. Kam, K. H. Kang, and M. G. Lee, Characterisitics of activated carbon prepared from waste citrus peel by KOH activation, Appl. Chem. Eng., 28, 649-654 (2017).
  30. K. H. Kang, S. K. Kam, and M. G. Lee, Adsorption characteristics of activated carbon prepared from waste citrus peels by NaOH activation, J. Environ. Sci. Int., 16, 1279-1285 (2007). https://doi.org/10.5322/JES.2007.16.11.1279
  31. K. H. Kang, S. K. Kam, and M. G. Lee, Preparation of activated carbon from waste citrus peels by $ZnCl_2$, J. Environ. Sci. Int., 16, 1091-1098 (2007). https://doi.org/10.5322/JES.2007.16.9.1091
  32. I. Langmuir, The adsorption od gases on plane surface of glass, mica and platinum, J. Am. Chem. Soc., 40, 1361-140 (1918). https://doi.org/10.1021/ja02242a004
  33. H. M. F. Freundlich, Over the adsorption in solution, J. Phys. Chem., 57, 385-470 (1906).
  34. J. T. Park, J. S. Kim, K. H. Chung, H. Moon, and S. Gon, Gaseous adsorption properties of n-hexane, methylethylketone and toluene on granular activated carbon, Korean Chem. Eng. Res., 31, 476-482 (1994).
  35. S. Lagergren, About the theory of so-called adsorption of soluble substances, Kunglia Svenska Vetenskapsakademiens Handlingar, 24, 1-39 (1898).
  36. Y. S. Ho and G. McKay, The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat, Can. J. Chem. Eng., 76, 822-827 (1998). https://doi.org/10.1002/cjce.5450760419
  37. W. J. Weber and J. C. Morris, Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., 89, 31-60 (1963).