DOI QR코드

DOI QR Code

Nano composite System based on ZnO-functionalized Graphene Oxide Nanosheets for Determination of Cabergoline

  • Beitollahi, Hadi (Environment Department, Institute of Science and High Technology and Environmental Sciences, Graduate University of Advanced Technology) ;
  • Tajik, Somayeh (Bam University of Medical Sciences) ;
  • Alizadeh, Reza (Department of Chemistry, Faculty of Science, Qom University)
  • 투고 : 2017.05.27
  • 심사 : 2017.10.18
  • 발행 : 2017.12.31

초록

In this paper we report an electrochemical sensor based on ZnO-functionalized graphene oxide nanocomposite (ZnO-GO) for the sensitive determination of the cabergoline. Cabergoline electrochemical behaviors were investigated by cyclic voltammetry (CV), chronoamperometry (CHA) and differential pulse voltammetry (DPV). The modified electrode shows electrocatalytic activity toward cabergoline oxidation in phosphate buffer solution (PBS) (pH 7.0) with a reduction of the overpotential of about 180 mV and an increase in peak current. The DPV data showed that the obtained anodic peak currents were linearly dependent on the cabergoline concentrations in the range of $1.0-200.0{\mu}M$, with the detection limit of $0.45{\mu}M$. The prepared electrode was successfully applied for the determination of cabergoline in real samples.

키워드

참고문헌

  1. J.B. Schulz, L. Hausmann, and J. Hardy, J. Neurochem., 2016, 139(S1), 3-7. https://doi.org/10.1111/jnc.13733
  2. M. Mazloum-Ardakani, B. Ganjipour, H. Beitollahi, M.K. Amini, F. Mirkhalaf, H. Naeimi, and M. NejatiBarzoki, Electrochim. Acta, 2011, 56(25), 9113-9120. https://doi.org/10.1016/j.electacta.2011.07.021
  3. A. Hatefi-Mehrjardi, N. Ghaemi, M.A. Karimi, M. Ghasemi, and S. IslamiRamchahi, Electroanalysis, 2017, 26, 2491-2500.
  4. S. Tajik, M.A. Taher, and H. Beitollahi, Electroanalysis, 2014, 26(4), 796-806. https://doi.org/10.1002/elan.201300589
  5. R. Jain, and A. Sinha, J. Electrochem. Soc., 2014, 161(5), H314-H320. https://doi.org/10.1149/2.032405jes
  6. S. Fathi, S. Omrani, and S. Zamani, J. Anal. Chem., 2016, 71, 269-275. https://doi.org/10.1134/S1061934816030126
  7. P. Odin, C. Oehlwein, A. Storch, U. Polzer, G. Werner, R. Renner, M. Shing, A. Ludolph, and P. Schuler, Acta Neurol. Scand., 2006, 113(1), 18-24. https://doi.org/10.1111/j.1600-0404.2005.00514.x
  8. F. Piroozi, E. Ghasemi, M. Qomi, R. Rezaee, and F. Hashemian, J. Liq. Chromatogr. Relat .Technol., 2014, 37(5), 760-771. https://doi.org/10.1080/10826076.2012.758142
  9. K. Igarashi, K. Hotta, F. Kasuya, K. Abe, and S. Sakoda, J. Chromatogr. B, 2003, 792(1), 55-61. https://doi.org/10.1016/S1570-0232(03)00279-4
  10. A. Dogan, I. Pehlivan, and N.E. Basci, Lat. Am. J. Pharm., 2011, 30, 132-138.
  11. A. Onal, and S. Caglar, Chem. Pharm. bull., 2007, 55(4), 629-631. https://doi.org/10.1248/cpb.55.629
  12. A.H. Schapira, J. Neurol. Neurosurg. Psychiatr., 2005, 76(11), 1472-1478. https://doi.org/10.1136/jnnp.2004.035980
  13. M. Asanuma, I. Miyazaki, and N. Ogawa, Neurotoxic. Res., 2003, 5, 165-176. https://doi.org/10.1007/BF03033137
  14. S. Tajik, M.A. Taher, and H. Beitollahi, Electroanalysis, 2014, 26(4), 796-806. https://doi.org/10.1002/elan.201300589
  15. T. Alizadeh, M.R. Ganjali, M. Zare, and P. Norouzi, Electrochim. Acta, 2010, 55(5), 1568-1574. https://doi.org/10.1016/j.electacta.2009.09.086
  16. H. Beitollahi, H. Karimi-Maleh, and H. Khabazzadeh, Anal. Chem., 2008, 80(24), 9848-9851. https://doi.org/10.1021/ac801854j
  17. F. Arduini, C. Zanardi, S. Cinti, F. Terzi, D. Moscone, G. Palleschi, and R. Seeber, Sens. Actuators B, 2015, 212, 536-543. https://doi.org/10.1016/j.snb.2015.02.051
  18. C.W. Foster, J.P. Metters, D.K. Kampouris, and C.E. Banks, Electroanalysis, 2014, 26(2), 262-274. https://doi.org/10.1002/elan.201300563
  19. K.F. Chan, H.N. Lim, N. Shams, S. Jayabal, A. Pandikumar, and N.M. Huang, Mater. Sci. Eng. C, 2016, 58, 666-674. https://doi.org/10.1016/j.msec.2015.09.010
  20. H. Beitollahi, S. Tajik, and Sh. Jahani, Electroanalysis, 2016, 28(5), 1093-1099. https://doi.org/10.1002/elan.201501020
  21. Sh. Jahani, and H. Beitollahi, Electroanalysis, 2016, 28(9), 2022-2028. https://doi.org/10.1002/elan.201501136
  22. H. Bagheri, A. Afkhami, Y. Panahi, H. Khoshsafar, and A. Shirzadmehr, Mater. Sci. Eng. C, 2014, 37, 264-270. https://doi.org/10.1016/j.msec.2014.01.023
  23. H. Beitollahi, and F. Garkani-Nejad, Electroanalysis, 2016, 28(9), 2237-2244. https://doi.org/10.1002/elan.201600143
  24. H. Karimi-Maleh, M. Keyvanfard, K. Alizad, M. Fouladgar, H. Beitollahi, A. Mokhtari, and F. GholamiOrimi, Int. J. Electrochem. Sci., 2011, 6(12), 6141-6150.
  25. B.J. Sanghavi, S. Sitaula, M.H. Griep, S.P. Karna, M.F. Ali, and N.S. Swami, Anal. Chem., 2013, 85(17), 8158-8165. https://doi.org/10.1021/ac4011205
  26. N. Atar, M.L. Yola, and T. Eren, Appl. Surf. Sci., 2016, 362, 315-322. https://doi.org/10.1016/j.apsusc.2015.11.222
  27. M. Kazemipour, M. Ansari, A. Mohammadi, H. Beitollahi, and R. Ahmadi, J. Anal. Chem., 2009, 64(1), 65-70. https://doi.org/10.1134/S1061934809010134
  28. D. Zhang, X. Ouyang, W. Ma, L. Li, and Y. Zhang, Electroanalysis, 2016, 28(2), 312-319. https://doi.org/10.1002/elan.201500348
  29. H. Karimi-Maleh, M. Moazampour, H. Ahmar, H. Beitollahi, and A.A. Ensafi, Measurement, 2014, 51, 91-99. https://doi.org/10.1016/j.measurement.2014.01.028
  30. S.K. Guchhait, and S. Paul, J. Electrochem. Sci. Technol., 2016, 7(3), 190-198. https://doi.org/10.5229/JECST.2016.7.3.190
  31. M. Mazloum-Ardakani, H. Beitollahi, A.K. Amini, F. Mirkhalaf, B.F. Mirjalili, and A. Akbari, Analyst, 2011, 136(9), 1965-1970. https://doi.org/10.1039/c0an00823k
  32. I. Kang, W.S. Shin, S. Manivannan, Y. Seo, and K. Kim, J. Electrochem. Sci. Technol., 2016, 7(4), 277-285. https://doi.org/10.5229/JECST.2016.7.4.277
  33. H. Beitollahi, and I. Sheikhshoaie, Int. J. Electrochem. Sci., 2012, 7, 7684-7698.
  34. B. Norouzi, A. Malekan, and M. Moradian, Russ. J. Electrochem., 2016, 52(4), 330-339. https://doi.org/10.1134/S1023193516040108
  35. N. Chauhan, S. Chawla, C.S. Pundir, and U. Jain, Biosens. Bioelectron., 2017, 89, 377-383. https://doi.org/10.1016/j.bios.2016.06.047
  36. O.L. Stroyuk, A.E. Raevskaya, Y.V. Panasiuk, V.F. Plyusnin, V.M. Dzhagan, S. Schulze, and D.R. Zahn, FlatChem, 2017, 2, 38-48. https://doi.org/10.1016/j.flatc.2017.04.001
  37. S. Reddy, B.K. Swamy, H.N. Vasan, and H. Jayadevappa, Anal. Methods, 2012, 4(9), 2778-2783. https://doi.org/10.1039/c2ay25203a
  38. M. Natividad, J.N. Arboleda, and H. Kasai, J. Electrochem. Sci. Technol., 2016, 7(3), 185-189. https://doi.org/10.5229/JECST.2016.7.3.185
  39. H. Beitollahi, S. Tajik, and P. Biparva, Measurement, 2014, 56, 170-177. https://doi.org/10.1016/j.measurement.2014.06.011
  40. B. Nigovic, A. Mornar, and M. Sertic, Microchim. Acta, 2016, 183(4), 1459-1467. https://doi.org/10.1007/s00604-016-1781-z
  41. M.L. Yola, V.K. Gupta, T. Eren, A.E. Sen, N. Atar, Electrochim. Acta, 2014, 120, 204-211. https://doi.org/10.1016/j.electacta.2013.12.086
  42. A. Naeemy, E. Sedighi, and A. Mohammadi, J. Electrochem. Sci. Technol., 2016, 7(1), 68-75. https://doi.org/10.5229/JECST.2016.7.1.68
  43. S. Tajik, M.A. Taher, and H. Beitollahi, Sens. Actuators B, 2014, 197, 228-236. https://doi.org/10.1016/j.snb.2014.02.096
  44. R.Sharma, S. Khan, V. Goyal, V. Sharma, and K.S. Sharma, FlatChem, 2017, 1, 20-33. https://doi.org/10.1016/j.flatc.2016.10.001
  45. A.J. Bard, and L.R. Faulkner, Electrochemical Methods Fundamentals and Applications, second ed, Wiley, New York, 2001.
  46. F. Hasanpour, M. Taei, S.H. Banitaba, and M. Heidari, Mater. Sci. Eng. C, 2017, 76, 88-93. https://doi.org/10.1016/j.msec.2017.02.128