DOI QR코드

DOI QR Code

Adsorption of ammonia using mesoporous alumina prepared by a templating method

  • Yeom, Changjoo (Department of Chemical Engineering, Kwangwoon University) ;
  • Kim, Younghun (Department of Chemical Engineering, Kwangwoon University)
  • 투고 : 2017.04.10
  • 심사 : 2017.06.06
  • 발행 : 2017.12.31

초록

Ammonia, $NH_3$, is a key chemical widely used in chemical industries and a toxic pollutant that impacts human health. Thus, there is a need for the development of effective adsorbents with high uptake capacities to adsorb $NH_3$. An adsorbent with a high surface area and a small pore size is generally preferred in order to have a high capacity for the removal of $NH_3$. The use inorganic nanoporous materials as gas adsorbents has increased substantially and emerged as an alternative to zeolite and activated carbon. Herein, mesoporous alumina (MA) was prepared and used as an $NH_3$ adsorbent. MA showed good pore properties such as a uniform pore size and interlinked pore system, when compared to commercial adsorbents (activated carbon, zeolite, and silica powder). MA has free hydroxyl groups, serving as useful adsorption sites for $NH_3$. In an adsorption isotherm test, MA exhibited 4.7-6.5 times higher uptake capacities for $NH_3$ than commercial adsorbents. Although the larger surface areas of adsorbents are important features of ideal adsorbents, a regular and interlinked adsorbent pore system was found to be a more crucial factor to adsorb $NH_3$.

키워드

참고문헌

  1. Barea E, Montoro C, Navarro JAR. Toxic gas removal: Metal-organic frameworks for the capture and degradation of toxic gases and vapours. Chem. Soc. Rev. 2014;43:5419-5430. https://doi.org/10.1039/C3CS60475F
  2. Hung CM. Decomposition kinetics of ammonia in the gaseous stream by a nanoscale copper-cerium bimetallic catalyst. J. Hazard. Mater. 2008;150:53-61. https://doi.org/10.1016/j.jhazmat.2007.04.044
  3. Chen Y, Li L, Li J, Ouyang K, Yang J. Ammonia capture and flexible transformation of M-2(INA) (M=Cu, Co, Ni, Cd) series materials. J. Hazard. Mater. 2016;306:340-347. https://doi.org/10.1016/j.jhazmat.2015.12.046
  4. Behera SN, Sharma M. Transformation of atmospheric ammonia and acid gases into components of $PM_{2.5}$: An environmental chamber study. Environ. Sci. Pollut. Res. Int. 2012;19:1187-1197. https://doi.org/10.1007/s11356-011-0635-9
  5. Furtado AMB, Liu J, Wang Y, LeVan MD. Mesoporous silica-metal organic composite: Synthesis, characterization, and ammonia adsorption. J. Mater. Chem. 2011;21:6698-6706. https://doi.org/10.1039/c1jm10451a
  6. Johnson BJ, Melde BJ, Peterson GW, Schindler BJ, Jones P. Functionalized organosilicate materials for irritant gas removal. Chem. Eng. Sci. 2012;68:376-382. https://doi.org/10.1016/j.ces.2011.09.048
  7. Helminen J, Helenius J, Paatero E, Turunen I. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K. J. Chem. Eng. Data 2001;46:391-399. https://doi.org/10.1021/je000273+
  8. Ruckart KN, Zhang Y, Reichert WM, Peterson GW, Glover TG. Sorption of ammonia in mesoporous-silica ionic liquid composites. Ind. Eng. Chem. Res. 2016;55:12191-12204. https://doi.org/10.1021/acs.iecr.6b02041
  9. Chiang WS, Fratini E, Baglioni P, Chen JH, Liu Y. Pore size effect on methane adsorption in mesoporous silica materials studied by small-angle neutron scattering. Langmuir 2016;6:8849-8857.
  10. Hanif A, Dasgupta S, Nanoti A. High temperature $CO_2$ adsorption by mesoporous silica supported magnesium aluminum mixed oxide. Chem. Eng. J. 2015;15:703-710.
  11. Belmabkhout Y, Weireld GD, Sayari A. Amine-bearing mesoporous silica for $CO_2$ and $H_2S$ removal from natural gas and biogas. Langmuir 2009;25:13275-13278. https://doi.org/10.1021/la903238y
  12. Zamani C, Illa X, Abdollahzadeh-Ghom S, Morante JR, Rodriguez AR. Mesoporous silica: A suitable adsorbent for amines. Nanoscale Res. Lett. 2009;4:1303-1308. https://doi.org/10.1007/s11671-009-9396-5
  13. Hung CT, Bai H. Adsorption behaviors of organic vapors using mesoporous silica particles made by evaporation induced self-assembly method. Chem. Eng. Sci. 2008;63:1997-2005. https://doi.org/10.1016/j.ces.2008.01.002
  14. Thote JA, Chatti RV, Iyer KS, et al. N-doped mesoporous alumina for adsorption of carbon dioxide. J. Environ. Sci. 2012;24:1979-1984. https://doi.org/10.1016/S1001-0742(11)61022-X
  15. Chen C, Ahn WS. $CO_2$ capture using mesoporous alumina prepared by a sol-gel process. Chem. Eng. J. 2011;1666:646-651.
  16. Kim Y, Kim C, Choi I, Rengaraj S, Yi J. Arsenic removal using mesoprous alumina prepared via a templaing method. Environ. Sci. Technol. 2004;38:924-931. https://doi.org/10.1021/es0346431
  17. Rengaraj S, Yeon JW, Kim Y, Kim WH. Application of Mg-mesoporous alumina prepared by using magnesium strearate as a template for the removal of nickel: Kinetics, isohterm, and error analysis. Ind. Eng. Chem. Res. 2007;46:2834-2842. https://doi.org/10.1021/ie060994n
  18. Kim Y, Lee B, Yi J. Effect of framework or textural nanoporosity on the bulk morphology of mesoporous aluminas. Korean J. Chem. Eng. 2007;24:679-682. https://doi.org/10.1007/s11814-007-0025-7
  19. Griffiths DWL, Hallam HE, Thomas WJ. Infrared study of adsorption and oxidation of ammonia on silica-supported platinum and silica. Trans. Faraday Soc. 1968;64:3361-3369. https://doi.org/10.1039/tf9686403361
  20. Peri JB. Infrared study of OH and $NH_3$ groups on the surface of a dry silica aerogel. J. Phys. Chem. 1966;70:2937-2945. https://doi.org/10.1021/j100881a037
  21. Blomfield GA, Little LH. Chemisorption of ammonia on silica. Can. J. Chem. 1973;51:1771-1781. https://doi.org/10.1139/v73-265
  22. Barpaga D, LeVan MD. Functionalization of carbon silica composites with active metal sites for $NH_3$ and $SO_2$ adsorption. Microporous Mesoporous Mater. 2016;221:197-203. https://doi.org/10.1016/j.micromeso.2015.09.044
  23. Wang Y, Bryan C, Xu H, Pohl P, Yang Y, Brinker CJ. Interface chemistry of nanostructured materials: Ion adsorption on mesoporous alumina. J. Colloid Interface Sci. 2002;254:23-30. https://doi.org/10.1006/jcis.2002.8571

피인용 문헌

  1. Bead-Shaped Mesoporous Alumina Adsorbents for Adsorption of Ammonia vol.13, pp.6, 2017, https://doi.org/10.3390/ma13061375
  2. Utilization of Biomass Fly Ash for Improving Quality of Organic Dye-Contaminated Water vol.5, pp.26, 2017, https://doi.org/10.1021/acsomega.0c00889
  3. Evaluation of the efficiency of three different mineral adsorbents in the removal of pollutants in samples from a tropical spring in Northeastern Brazil vol.92, pp.8, 2017, https://doi.org/10.1002/wer.1314
  4. Approaches to the mitigation of ammonia inhibition during anaerobic digestion - a review vol.15, pp.3, 2020, https://doi.org/10.2166/wpt.2020.047
  5. Efficient Removal of Ammonia by Hierarchically Porous Carbons from a CO2 Capture Process vol.43, pp.10, 2020, https://doi.org/10.1002/ceat.202000104
  6. Removal of ammonia from industrial wastewater using novel heterogeneous nanocomposite of nickel, strontium, and zirconia oxides decorated graphene oxide vol.39, pp.6, 2017, https://doi.org/10.1002/ep.13444
  7. Preparation and Characterization of Physicochemical Properties of Spruce Cone Biochars Activated by CO2 vol.14, pp.14, 2017, https://doi.org/10.3390/ma14143859