DOI QR코드

DOI QR Code

Optical Design of a Wide-field Off-axis Two-mirror System without Ray Obstruction

광선의 차폐가 없는 광시야 비축 2반사광학계 설계

  • Oh, Hye-Jin (Department of Laser and Optical Information Engineering, Cheongju University) ;
  • Lee, Jong-Ung (Department of Laser and Optical Information Engineering, Cheongju University)
  • 오혜진 (청주대학교 레이저광정보공학과) ;
  • 이종웅 (청주대학교 레이저광정보공학과)
  • Received : 2017.10.31
  • Accepted : 2017.11.10
  • Published : 2017.12.25

Abstract

To design a wide-field optical system, the inverted telephoto configuration, which has a negative front group and a positive rear group, is popular. For a two-mirror system, the inverse Cassegrain system has the inverted telephoto configuration, but the inverse Cassegrain system with the conventional, axially symmetric configuration shows severe field screening and ray obstruction. To avoid these problems, we put the aperture stop on the secondary mirror of an inverse Cassegrain system to increase field of view, and designed a wide-field off-axis two-mirror system which only uses the off-axis field, without ray obstruction.

넓은 시야를 가지는 광학계에서는 전반부는 음의 굴절능, 후반부는 양의 굴절능을 가지는 inverted telephoto 구조가 일반적으로 사용되고 있고, 2반사광학계에서는 inverse Cassegrain system이 inverted telephoto 구조에 해당한다. 하지만 통상적인 회전대칭 구성의 inverse Cassegrain system에서는 시야가 가려지고 광선의 차폐가 심한 문제점이 있다. 이 연구에서는 이점을 고려하여 inverse Cassegrain system의 제2면에 조리개를 두어 시야를 넓히고, 광선의 차폐가 없는 비축시야만을 사용하는 광시야 비축 2반사광학계를 설계하였다.

Keywords

References

  1. I. Moon, S. Lee, J. Lim, H. S. Yang, H.-G. Rhee, J. B. Song, Y. W. Lee, J. U. Lee, and H. Jin, "Design and development of a wide field telescope," Proc. SPIE 8444, 844448 (2012).
  2. Y. S. Kim, J. Hong, B. Choi, J.-U. Lee, Y. Kim, and H. Kim, "Assembly and alignment method for optimized spatial resolution of off-axis three-mirror fore optics of hyperspectral imager," Opt. Express 25, 20817-20828 (2017). https://doi.org/10.1364/OE.25.020817
  3. J. U. Lee, Y. Kim, S. H. Seo, Y. Kim, and H. Kim, "Optical design of an image-space telecentric two-mirror system for wide-field line imaging," Curr. Opt. Photonics 1, 344-350 (2017).
  4. G. I. Lebedeva and A. A. Garbul, "Prospective aerospace reflective objectives," J. Opt. Technol. 61, 610-614 (1994).
  5. S. Rosin, "Inverse Cassegrainian systems," Appl. Opt. 7, 1483-1497 (1968). https://doi.org/10.1364/AO.7.001483
  6. W. B. Wetherell and M. P. Rimmer, "General analysis of aplanatic Cassegrain, Gregorian, and Schwarzschild telescopes," Appl. Opt. 11, 2817-2832 (1972). https://doi.org/10.1364/AO.11.002817
  7. C. L. Wyman and D. Korsch, "Aplanatic two-mirror telescopes; a systematic study. 3: Schwarzschild-Couder configuration," Appl. Opt. 14, 992-995 (1975). https://doi.org/10.1364/AO.14.000992
  8. H. Gross, F. Blechinger, and B. Achtner, "Survey of Optical Instruments," in Handbook of Optical Systems, Vol. IV, H. Gross, ed. (Wiley-VCH, Weinheim, 2007), Chapter 43.
  9. J. U. Lee and S. M. Yu, "Analytic design procedure of three-mirror telescope corrected for spherical aberration, coma, astigmatism, and Petzval field curvature," J. Opt. Soc. Korea 13, 184-192 (2009). https://doi.org/10.3807/JOSK.2009.13.2.184
  10. W. T. Welford, Aberrations of optical system (Adam Hilger, Bristol, 1986).