DOI QR코드

DOI QR Code

Simulation of Manipulating Various Pulsed Laser Operations Through Tuning the Modulation Depth of a Saturable Absorber

포화 흡수체의 투과변조깊이 조절을 통한 다양한 펄스상태 조작 방법에 관한 전산 모사

  • Gene, Jinhwa (Division of Physical Metrology, Center for Optical Metrology, Korea Research Institute of Standards and Science) ;
  • Yeom, Dong-Il (Department of Physics and Department of Energy Systems Research, Ajou University) ;
  • Kim, Byoung Yoon (Department of Physics, Korea Advanced Institute of Science and Technology)
  • 진진화 (한국표준과학연구원 광학표준센터 물리표준본부) ;
  • 염동일 (아주대학교 물리학과, 에너지시스템학과) ;
  • 김병윤 (한국과학기술원 물리학과)
  • Received : 2017.07.21
  • Accepted : 2017.10.10
  • Published : 2017.12.25

Abstract

In this paper, we conduct a simulation of manipulating various pulsed laser operations through tuning the modulation depth of the saturable absorber in a laser cavity. The research, showing that various pulsed operations could be manipulated from Q-switching through Q-switched mode locking to mode locking by tuning the modulation depth of the saturable absorber in a cavity, has been studied by experimental means. We conduct a simulation with the Haus master equation to verify that these experimental results are consistent with expectations from theory. The time dependence of the gain was considered to express Q-switching fluctuation through applying a rate equation with the Haus master equation. Laser operation was manipulated from mode locking through Q-switched mode locking to Q-switching as modulation depth was increased, and this result agreed well with the theoretical expectation.

본 논문에서는 포화흡수체의 투과변조깊이 조절을 통해 다양한 펄스 상태를 한 공진기 안에서 구현하는 방법에 관한 전산 모사를 진행하였다. 포화흡수체의 투과변조깊이의 크기 변화만으로 큐스위치드 레이저, 큐스위치드 모드 잠금 레이저, 모드 잠금 레이저 등 원하는 펄스 레이저 상태로 전환이 가능하다는 실험적 연구가 있어 왔으며, 이러한 연구가 이론적으로 부합하는 내용임을 확인하기 위해 Haus master 식을 사용하여 전산 모사를 진행하였다. 큐스위칭된 광 파워를 모사하기위해 이득 값은 시간 의존성을 가지도록 반응속도식을 적용하였다. 그 결과 투과변조깊이가 증가함에 따라 모드 잠금 레이저에서부터, 큐스위치드 레이저, 큐스위치드 레이저로 동작함을 확인하였고, 이는 이론적으로 예측된 경향성과 일치하였다.

Keywords

References

  1. U. Keller, "Recent developments in compact ultrafast lasers," Nat. 424(6950), 831-838 (2003). https://doi.org/10.1038/nature01938
  2. R. M. Sova, M. E. Thomas, D. Tobin, D. Byrum, and L. L. Strow, "Characterization of candidate DIAL lidar watervapor and carbon dioxide absorption lines in the 2-um region," Proc. SPIE 2366, 383-393 (1995).
  3. Y. You, L. Yan, W. Huang, C. Tang, E. Physics, J. Urakawa, H. Shimizu, K. E. K. High, and E. Accelerator, "Gaussian spectrum fiber laser pulses generated in an all-normaldispersion cavity," IPAC 2013, 2983-2985 (2013).
  4. S. Y. Choi, H. Jeong, B. H. Hong, F. Rotermund, and D.-I. Yeom, "All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber," Laser Phys. Lett. 11(1), 15101 (2014). https://doi.org/10.1088/1612-2011/11/1/015101
  5. H. Zhang, D. Tang, R. J. Knize, L. Zhao, Q. Bao, and K. P. Loh, "Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser," Appl. Phys. Lett. 96(11), 111112 (2010). https://doi.org/10.1063/1.3367743
  6. E. J. Lee, S. Y. Choi, H. Jeong, N. H. Park, W. Yim, M. H. Kim, J.-K. Park, S. Son, S. Bae, S. J. Kim, K. Lee, Y. H. Ahn, K. J. Ahn, B. H. Hong, J.-Y. Park, F. Rotermund, and D.-I. Yeom, "Active control of all-fibre graphene devices with electrical gating," Nat. Commun. 6, 6851 (2015). https://doi.org/10.1038/ncomms7851
  7. J. H. Lee, J. Koo, P. Debnath, and Y. W. Song, "A Q-switched, mode-locked fiber laser using a graphene oxide-based polarization sensitive saturable absorber," Laser Phys. Lett. 10(3), 35103 (2013). https://doi.org/10.1088/1612-2011/10/3/035103
  8. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. R. Shen, "Gate-variable optical transitions in graphene," Sci. 320(5873), 206-209 (2008). https://doi.org/10.1126/science.1152793
  9. M. Mittendorff, F. Wendler, E. Malic, A. Knorr, M. Orlita, M. Potemski, C. Berger, W. A. de Heer, H. Schneider, M. Helm, and S. Winnerl, "Carrier dynamics in Landauquantized graphene featuring strong Auger scattering," Nat. Phys. 11(1), 75-81 (2014). https://doi.org/10.1038/nphys3164
  10. F. Kadi, T. Winzer, A. Knorr, and E. Malic, "Impact of doping on the carrier dynamics in graphene," Sci. Rep. 5, 16841 (2015). https://doi.org/10.1038/srep16841
  11. F. Wendler, A. Knorr, and E. Malic, "Ultrafast carrier dynamics in Landau-quantized graphene," Nanophotonics 4(1), 224-249 (2015).
  12. J. Gene, N. H. Park, H. Jeong, S. Y. Choi, F. Rotermund, D.-I. Yeom, and B. Y. Kim, "Optically controlled in-line graphene saturable absorber for the manipulation of pulsed fiber laser operation," Opt. Express 24(19), 21301 (2016). https://doi.org/10.1364/OE.24.021301
  13. H. A. Haus, "Mode-locking of lasers," Sel. Topics Quantum Electron. 6(6), 1173-1185 (2000). https://doi.org/10.1109/2944.902165
  14. H. A. Haus, "Parameter ranges for CW passive mode locking," IEEE J. Quantum Electron. 12(3), 169-176 (1976). https://doi.org/10.1109/JQE.1976.1069112
  15. C. Hönninger, R. Paschotta, F. Morier-Genoud, M. Moser, and U. Keller, "Q-switching stability limits of continuouswave passive mode locking," J. Opt. Soc. Am. B 16(1), 46-56 (1999). https://doi.org/10.1364/JOSAB.16.000046
  16. A. E. Siegman, Lasers university science books (Mill Valley, 1986).