DOI QR코드

DOI QR Code

Periodically Aligned Metal Nanoparticle Array for a Plasmonic Absorber and Its Fabrication Technique

플라즈모닉 흡수체를 위한 금속 나노입자 주기구조 제작 기술

  • Choi, Minjung (School of Mechanical Engineering, Yonsei University) ;
  • Ryu, Yunha (School of Mechanical Engineering, Yonsei University) ;
  • Bae, Kyuyoung (School of Mechanical Engineering, Yonsei University) ;
  • Kang, Gumin (Nanophotonics Research Centre, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Kyoungsik (School of Mechanical Engineering, Yonsei University)
  • 최민정 (연세대학교 기계공학과, 광학 및 메타물질 연구실) ;
  • 류윤하 (연세대학교 기계공학과, 광학 및 메타물질 연구실) ;
  • 배규영 (연세대학교 기계공학과, 광학 및 메타물질 연구실) ;
  • 강구민 (한국과학기술연구원, 나노포토닉스연구센터) ;
  • 김경식 (연세대학교 기계공학과, 광학 및 메타물질 연구실)
  • Received : 2017.08.07
  • Accepted : 2017.11.07
  • Published : 2017.12.25

Abstract

In this paper, we demonstrate a facile fabrication technique for a periodically aligned metal nanoparticle array, for a narrow-band plasmonic absorber. The metal nanoparticles are fabricated by e-beam evaporation and heat treatment processes on top of a periodic aluminum groove template. The plasmonic absorber is constructed with the transferred metal nanoparticle array, sputtered 33-nm-thick $Al_2O_3$, and 200-nm-thick metal reflector layers on silicon substrate. 46-nm-diameter and 76-nm-lattice metal-nanoparticle-array-based plasmonic absorber has performed as a narrow-band absorber with a central wavelength of 572 nm and full width at half maximum (FWHM) of 109.9 nm.

본 논문은 협대역의 플라즈모닉 흡수체 구현을 위한 금속 나노입자 주기구조 설계 및 제작에 관한 연구다. 제안된 플라즈모닉 흡수체의 상단 금속 나노입자는 주기적으로 홈이 파여있는 템플릿을 이용하여 전자빔 증착 후, 열처리하는 제작 기술로 형성하였다. 주기적 홈 템플릿 위에 제작된 금속 나노입자를, 따로 제작한 33 nm 두께의 $Al_2O_3$가 스퍼터 가공된 200 nm 두께의 금속 반사판-기판 상단에 옮기는 방법을 통해 플라즈모닉 흡수체를 제작하였다. 제작된 금속 나노입자는 평균 지름 46 nm, 주기 76 nm의 크기를 가졌다. 광학 측정 결과, 제작된 플라즈모닉 흡수체는 중심파장 572 nm, 반값전폭 109.9 nm의 플라즈모닉 공명 흡수를 나타내었다.

Keywords

References

  1. H. T. Miyazaki and Y. Kurokawa, "Squeezing visible light waves into a 3-nm-thick and 55-nm-long plasmon cavity," Phys. Rev. Lett. 96, 097401 (2006). https://doi.org/10.1103/PhysRevLett.96.097401
  2. M. G. Nielsen, A. Pors, O. Albrektsen, and S. I. Bozhevolnyi, "Efficient absorption of visible radiation by gap plasmon resonators," Opt. Express 20, 13311-13319 (2012). https://doi.org/10.1364/OE.20.013311
  3. K. Aydin, V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nat. Commun. 2, 517 (2011). https://doi.org/10.1038/ncomms1528
  4. F. Wang, A. Chakrabarty, F. Minkowski, K. Sun, and Q.-H. Wei, "Polarization conversion with elliptical patch nanoantennas," Appl. Phys. Lett. 101, 023101 (2012). https://doi.org/10.1063/1.4731792
  5. A. Tittl, M. G. Harats, R. Walter, X. Yin, M. Schaferling, N. Liu, R. Rapaport, and H. Giessen, "Quantitative angleresolved small-spot reflectance measurements on plasmonic perfect absorbers: impedance matching and disorder effects," ACS Nano 8, 10885-10892 (2014). https://doi.org/10.1021/nn504708t
  6. H. Masuda and K. Fukuda, "Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina," Sci. 268, 1466-1468 (1995). https://doi.org/10.1126/science.268.5216.1466
  7. K. Bae, G. Kang, S. K. Cho, W. Park, K. Kim, and W. J. Padilla, "Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation." Nat. Commun. 6, 10103 (2015). https://doi.org/10.1038/ncomms10103
  8. M. Choi, G. Kang, D. Shin, N. Barange, C.-W. Lee, D.-H. Ko, and K. Kim, "Lithography-free broadband ultrathin-film absorbers with gap-plasmon resonance for organic photovoltaics," ACS Appl. Mater. Interfaces 8, 12997-13008 (2016). https://doi.org/10.1021/acsami.6b02340
  9. A. Moreau, C. Ciraci, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, and D. R. Smith, "Controlledreflectance surfaces with film-coupled colloidal nanoantennas," Nat. (London, U.K.) 492, 86-89 (2012). https://doi.org/10.1038/nature11615
  10. J. Lee, K. Bae, G. Kang, M. Choi, S. Baek, D.-S. Yoo, C.-W. Lee, and K. Kim, "Graded-lattice AAO photonic crystal heterostructure for high Q refractive index sensing," RSC Adv. 5, 71770 (2015). https://doi.org/10.1039/C5RA15890G
  11. X. Fan, Q. Hao, R. Jin, H. Huang, Z. Luo, X. Yang, Y. Chen, X. Han, M. Sun, Q. Jing, Z. Dong, and T. Qiu, "Assembly of gold nanoparticles into aluminum nanobowl array," Sci. Rep. 7, 2322 (2017). https://doi.org/10.1038/s41598-017-02552-z
  12. C. Zhang, W. Li, D. Yu, Y. Wang, M. Yin, H. Wang, Y. Song, X. Zhu, P. Chang, X. Chen, and D. Li, "Wafer-scale highly ordered anodic aluminum oxide by soft nanoimprinting lithography for optoelectronics light management," Adv. Mater. Interfaces 4, 1601116 (2017). https://doi.org/10.1002/admi.201601116
  13. K. Nakayama, K. Tanabe, and H. A. Atwater, "Plasmonic nanoparticle enhanced light absorption in GaAs solar cells," Appl. Phys. Lett. 93, 121904 (2008). https://doi.org/10.1063/1.2988288
  14. H. Liu, X. Zhang, T. Zhai, T. Sander, L. Chen, and P. J. Klar, "Centimeter-scale-homogeneous SERS substrates with seven-order global enhancement through thermally controlled plasmonic nanostructures," Nanoscale 6, 5099 (2014). https://doi.org/10.1039/C4NR00161C
  15. M. J. McClain, A. E. Schlather, E. Ringe, N. S. King, L. Liu, A. Manjavacas, M. W. Knight, I. Kumar, K. H. Whitmire, H. O. Everitt, P. Nordlander, and N. J. Halas, "Aluminum nanocrystals," Nano Lett. 15, 2751 (2015). https://doi.org/10.1021/acs.nanolett.5b00614