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ON A TOTALLY UMBILIC HYPERSURFACE OF FIRST

ORDER

Jaeman Kim

Abstract. In this paper, we define a totally umbilic hypersurface
of first order and show that a totally umbilic hypersurface of first
order in an Einstein manifold has a parallel second fundamental
form. Furthermore we prove that a complete, simply connected
and totally umbilic hypersurface of first order in a space of constant
curvature is a Riemannian product of Einstein manifolds. Finally
we show a proper example which is a totally umbilic hypersurface
of first order but not a totally umbilic hypersurface.

1. Introduction

A totally umbilic hypersurface of a Riemannian manifold has received
a great deal of attention and has been studied in considerable detail by
many authors. For instance, a totally umbilic hypersurface in a space of
constant curvature was investigated by Cheng and Nakagawa [5]; Hasa-
nis [8]; Okumura [11]; Kim and Park [9]. Also a totally umbilic hy-
persurface in a conformally flat symmetric space (resp. a homogeneous
space) was studied by Calvaruso, Kowalczyk and Van der Veken [3]; Van
der Veken and Vrancken [14] (resp. Souam and Toubiana [12]; Van der
Veken [13]). In this paper, as a natural generalization of the notion of
a totally umbilic hypersurface, we introduce the notion of a totally um-
bilic hypersurface of first order, and investigate some properties of such
a manifold in a space of constant curvature or in an Einstein manifold.
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2. Preliminaries

Let (M̄n+1, ḡ) be an (n+1)-dimensional Riemannian manifold covered
by a system of coordinate neighborhoods {U ; yα} and (Mn, g) a hyper-
surface of (M̄n+1, ḡ) covered by a system of coordinate neighborhoods
{V ;xi}. Let yα = yα(xi) be the parametric representation of the hyper-
surface Mn in M̄n+1, where Greek indices take the values 1, 2, ..., n + 1
and Latin indices take the values 1, 2, ..., n. Then we have

(1) gij = ḡαβ
∂yα

∂xi
∂yβ

∂xj
.

Here we adopt the Einstein convention, that is, when an index vari-
able appears once in an upper and once in a lower position in a term,
it implies summation of that term over all the values of the index. Let
Nα be a local unit normal to (Mn, g). Then we have the relations

ḡαβN
α∂y

β

∂xj
= 0,

ḡαβN
αNβ = 1,

(2) ḡαβ = gij
∂yα

∂xi
∂yβ

∂xj
+ NαNβ.

We also have the following equations of Gauss and of Weingarten:

(
∂yα

∂xi
);j = ωijN

α,

(3) Nα
;i = −ωijgjk(

∂yα

∂xk
),

where ωij is the second fundamental form of (Mn, g) and semicolon ”;”
indicates covariant differentiation. The structure equations of Gauss
and Codazzi for a hypersurface (Mn, g) of (M̄n+1, ḡ) can be respectively
written as

(4) Rijkl = R̄αβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
+ ωilωjk − ωikωjl,

(5) R̄αβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ = ωjk;i − ωik;j ,

where Rijkl and R̄αβγδ are the curvature tensors of (Mn, g) and (M̄n+1, ḡ),
respectively. The hypersurface (Mn, g) is said to be a totally umbilic
hypersurface of (M̄n+1, ḡ) [4] if its second fundamental form ωij satisfies
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ωij = Hgij ,

(6) (
∂yα

∂xi
);j = gijHNα,

where H denotes the mean curvature of (Mn, g) defined by H = 1
ng

ijωij .
In particular, if H=0, then the totally umbilic hypersurface (Mn, g) is
called a totally geodesic hypersurface of (M̄n+1, ḡ) [4]. The equations
of Weingarten, Gauss and Codazzi for a totally umbilic hypersurface
(Mn, g) of (M̄n+1, ḡ) are respectively obtained as

(7) Nα
;i = −H∂yα

∂xi
,

(8) Rijkl = R̄αβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
+ H2(gilgjk − gikgjl),

(9) R̄αβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ = H;igjk −H;jgik.

3. Totally umbilic hypersurfaces of first order

A hypersurface (Mn, g) of (M̄n+1, ḡ) is said to be a totally umbilic
hypersurface of first order if its second fundamental form ωij satisfies

(10) ωij;k = Akgij ,

where Ak are the components of 1-form A.
It is easy to see that every totally umbilic hypersurface is a totally
umbilic hypersurface of first order.

In particular if the associated 1-form A in (10) vanishes, then the
second fundamental form is parallel [7,15]. In general if the 1-form A is
closed, then the second fundamental form is semiparallel [6,10].

A Riemannian manifold (Mn, g) is said to be Einstein if its Ricci
tensor r is proportional to the metric tensor g, i.e.

(11) rij =
s

n
gij .

Note that the scalar curvature s of an Einstein manifold is constant
when the dimension is greater or equal to 3 [1]. Concerning totally
umbilic hypersurfaces of first order in an Einstein manifold, we obtain
the following results:
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Theorem 3.1. Let (Mn, g) be a totally umbilic hypersurface of first
order in an Einstein manifold (M̄n+1, ḡ). Then its associated 1-form A
vanishes.

Proof. By virtue of (5) and (10), we have

(12) R̄αβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
N δ = Aigjk −Ajgik.

By transvecting (12) by gjk, we obtain from (2)

R̄αβγδ
∂yα

∂xi
(ḡβγ −NβNγ)N δ = (n− 1)Ai,

which yields

r̄αδ
∂yα

∂xi
N δ − R̄αβγδ

∂yα

∂xi
NβNγN δ = (n− 1)Ai.

By taking account of the Einstein condition (11), the last relation re-
duces to

(13) R̄αβγδ
∂yα

∂xi
NβNγN δ = −(n− 1)Ai.

On the other hand, by considering the skew symmetric property of cur-
vature tensor and the hypersurface condition , we have

(14) R̄αβγδ
∂yα

∂xi
NβNγN δ = 0.

Therefore it follows from (13) and (14) that the associated 1-form A
vanishes. This completes the proof.

Corollary 3.2. Let (Mn, g) be a totally umbilic hypersurface of first
order in an Einstein manifold (M̄n+1, ḡ). Then its mean curvature H is
constant.

Proof. It follows from (10) and Theorem 3.1 that the second funda-
mental form ωij is parallel. Hence by definition of the mean curvature
H, that is, H = 1

ng
ijωij , we have H;p = 0.
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Theorem 3.3. Let (Mn, g) be a totally umbilic hypersurface of first
order in an Einstein manifold (M̄n+1, ḡ). Then its scalar curvature s is
constant.

Proof. By differentiating (4) covariantly, we obtain from (3)

Rijkl;p = R̄αβγδ;µ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp
+ R̄αβγδ(ωipN

α)
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl

+R̄αβγδ
∂yα

∂xi
(ωjpN

β)
∂yγ

∂xk
∂yδ

∂xl
+ R̄αβγδ

∂yα

∂xi
∂yβ

∂xj
(ωkpN

γ)
∂yδ

∂xl

(15)

+R̄αβγδ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
(ωlpN

δ) + ωil;pωjk + ωilωjk;p − ωik;pωjl − ωikωjl;p.

From (5), (10), (15) and Theorem 3.1 it follows that

(16) Rijkl;p = R̄αβγδ;µ
∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
∂yµ

∂xp
.

By transvecting (16) by gil we have from (2)

rjk;p = (ḡαδ −NαN δ)R̄αβγδ;µ
∂yβ

∂xj
∂yγ

∂xk
∂yµ

∂xp

(17) = r̄βγ;µ
∂yβ

∂xj
∂yγ

∂xk
∂yµ

∂xp
− R̄αβγδ;µN

α∂y
β

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp
.

By taking account of the Einstein manifold (M̄n+1, ḡ), we get from (17)

(18) rjk;p = −R̄αβγδ;µN
α∂y

β

∂xj
∂yγ

∂xk
N δ ∂y

µ

∂xp
.

By transvecting (18) by gjk, we have from (2) and the Einstein manifold
(M̄n+1, ḡ),

s;p = −(ḡβγ −NβNγ)R̄αβγδ;µN
αN δ ∂y

µ

∂xp

= −r̄αδ;µNαN δ ∂y
µ

∂xp
+ R̄αβγδ;µN

αNβNγN δ ∂y
µ

∂xp
= 0

because of the skew symmetric property of curvature tensor and the
hypersurface condition. Therefore we conclude that the scalar curvature
s of (Mn, g) is constant.
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A Riemannian manifold (Mn, g) is said to be a space of constant
curvature if its curvature tensor R satisfies the relation:

(19) Rijkl =
s

n(n− 1)
(gilgjk − gikgjl).

Note that a space of constant curvature is Einstein and hence its scalar
curvature s is constant. In case of a space of constant curvature, we
obtain the following results:

Theorem 3.4. Let (Mn, g) be a totally umbilic hypersurface of first
order in a space of constant curvature (M̄n+1, ḡ). Then the manifold
(Mn, g) is locally symmetric.

Proof. By considering (4) and (19), we have
(20)

Rijkl =
s̄

(n + 1)n
(ḡαδ ḡβγ − ḡαγ ḡβδ)

∂yα

∂xi
∂yβ

∂xj
∂yγ

∂xk
∂yδ

∂xl
+ (ωilωjk − ωikωjl),

where s̄ is the scalar curvature of a space of constant curvature (M̄n+1, ḡ).
By taking account of (1) and (20), we obtain

(21) Rijkl =
s̄

(n + 1)n
(gilgjk − gikgjl) + (ωilωjk − ωikωjl).

By differentiating (21) covariantly, we get from (10), s̄= constant and
Theorem 3.1

Rijkl;p = 0,

showing that (Mn, g) is locally symmetric. This completes the proof.

Theorem 3.5. Let (Mn, g) be a complete, simply connected and
totally umbilic hypersurface of first order in a space of constant curva-
ture (M̄n+1, ḡ). Then the manifold (Mn, g) is a Riemannian product of
Einstein manifolds.
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Proof. By virtue of Theorem 3.4, we have

(22) Rijkl;p = 0.

By transvecting (22) by gil, we obtain

(23) rjk;p = 0,

showing that the manifold (Mn, g) has a parallel Ricci tensor r. It
follows from the de Rham decomposition theorem [2] that (23) implies
that the complete, simply connected manifold (Mn, g) is a Riemannian
product of Einstein manifolds. This completes the proof.

Now we show a proper example which is a totally umbilic hypersurface
of first order but not a totally umbilic hypersurface:

Example 3.6. Let (Sn ×Rm, g) be a hypersurface with an induced
metric g of a flat manifold (Rn+1×Rm, go). Here Sn is a standard sphere
of dimension n in Rn+1.

Then by the basic properties of a Riemannian product manifold, we
have

(24) ω(X,Y ) = ω(X1 + X2, Y1 + Y2) = ω(X1, Y1) + ω(X2, Y2)

and

(25) g(X,Y ) = g(X1 + X2, Y1 + Y2) = g(X1, Y1) + g(X2, Y2),

where X,Y are vector fields on Sn ×Rm, and X1, Y1 (resp. X2, Y2) are
vector fields on Sn (resp. Rm).

On the other hand, it is easy to see that

(26) ω(X1, Y1) = 1g(X1, Y1)

and

(27) ω(X2, Y2) = 0g(X2, Y2).

Therefore it follows from (24), (25), (26) and (27) that

ω(X,Y ) 6= cg(X,Y ),

showing that the Riemannian product manifold (Sn × Rm, g) is not a
totally umbilic hypersurface in a flat manifold (Rn+1×Rm, go). However
by (26), (27) and the basic properties of a Riemannian product manifold,
we get

(∇Zω)(X,Y ) = (∇Z1ω)(X1, Y1) + (∇Z2ω)(X2, Y2) = 0,
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where Z is a vector field on Sn×Rm, and Z1, Z2 are vector fields on Sn,
Rm respectively. Hence we obtain

(∇Zω)(X,Y ) = 0g(X,Y ),

showing that the Riemannian product manifold (Sn×Rm, g) is a totally
umbilic hypersurface of first order with vanishing 1-form A in a flat
manifold (Rn+1 ×Rm, go).
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