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TIGHT CLOSURE OF IDEALS RELATIVE TO SOME

MODULES

F. Dorostkar ∗ and R. Khosravi

Abstract. In this paper we consider the tight closure of an ideal
relative to a module whose its zero submodule has a primary de-
composition.

1. Introduction

Throughout this paper R denotes a commutative Noetherian ring
with identity and with a positive prime characteristic p. Further N will
denote the set of natural integers and throughout the remainder of this
paper R◦ will denote the subset of R consisting of all elements which
are not contained in any minimal prime ideal of R.

The main idea of tight closure of an ideal in a commutative Noether-
ian ring (with a positive prime characteristic) introduced by Hochster
and Huneke in [5].

Let I be an ideal of R. The ideal (ap
e

: a ∈ I) is denoted by I [p
e] and

is called the eth Frobenius power of I. In particular if I = (a1, a2, ..., an),

then I [p
e] = (ap

e

1 , ap
e

2 , ..., ap
e

n ). In the remainder of this paper, to simplify
notation, we will write q to stand for a power pe of p. For any ideals
I and J , I [q] + J [q] = (I + J)[q], I [q]J [q] = (IJ)[q]. We recall that an
element x of R is said to be in the tight closure I∗, of I, if there exists
an element c ∈ R◦ such that for all sufficiently large q, cxq ∈ I [q]. More
details for the tight closure of an ideal can be found in [10].

In [1], the dual notion of tight closure of ideals relative to modules
was introduced and some properties of this concept which reflect results
of tight closure in the classical situation were obtained. It is appropriate
for us to begin by briefly summarizing some of main aspects.
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Let M be an R−module and let I and J be ideals of R. I is an
F−reduction of the ideal J relative to M , if I ⊆ J and there exists
c ∈ R◦ such that

(0 :M I [q]) ⊆ (0 :M cJ [q]) for all q � 0.

It is straightforward to see that the set of ideals of R which have I as
an F−reduction relative to M has a unique maximal member, denoted
by I∗[M ] and called the tight closure of I relative to M . This is in fact
the largest ideal which has I as F−reduction relative to M (see [1]).

An element x of R is said to be tight dependent on I relative to M ,
if there exists an element c ∈ R◦ such that

(0 :M I [q]) ⊆ (0 :M cxq) for all q � 0.

In [1], it is shown that I ⊆ I∗ ⊆ I∗[M ] and

I∗[M ] = {x ∈ R : x is tight dependent on I relative to M}.
Moreover in [3], it is shown that if S is a multiplicatively closed subset
of R and M is a Noetherian R−module then

S−1I∗[M ] = (S−1I)∗[S
−1M ].

Now, let M be an R−module not necessarily finitely generated. In
this paper, we will show that the last equation is still true if the zero sub-
module of M has a minimal primary decomposition and every associated
prime ideal of M is isolated.

2. Auxiliary Results

In this section, we provide some definitions, notations and base facts
which we need for the main sections of this paper.

Let M be an R−module. A proper submodule N of M is said to
be primary submodule if for every r ∈ R and m ∈ M , rm ∈ N implies
that m ∈ N or r ∈

√
(N :R M). If N is a primary submodule of M

then P =
√

(N :R M) is a prime ideal of R and N is said a P−primary
submodule of M . A non zero module is said to be P−coprimary if
its zero submodule is a P−primary submodule. If N is a P−primary
submodule of M then the quotient M/N is P−coprimary.

For a submodule N of M the intersection N = N1 ∩N2 ∩ .... ∩Nk

where Ni is a Pi−primary submodule of M for every 1 ≤ i ≤ k, is called
a primary decomposition of N and if

(a) the prime ideals P1, P2, ..., Pk are all distinct and
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(b)N 6=
k⋂

i=1
i 6=j

Ni for every 1 ≤ j ≤ k

then it is called a minimal primary decomposition of N . We know
that every primary decomposition of N can be refined to a minimal
primary decomposition.

Let the zero submodule of M have a minimal primary decomposition
0 = N1 ∩N2 ∩ .... ∩Nk where Ni is a Pi−primary submodule of M for
every 1 ≤ i ≤ n. Every minimal prime ideal of {P1, ..., Pk} is called an
isolated prime ideal. We know that if Pi is a minimal prime ideal of
{P1, ..., Pk} then the corresponding Pi−primary component is the same
in any minimal primary decomposition of 0 (see [7, page 55]).

Now we recall that, a prime ideal P of R is called an associated prime
ideal of M if there exists x ∈ M such that P = Ann(x). The set of all
associated prime ideals of M , is denoted by Ass(M).

Remark 2.1. (See [11, 1.1].) Let M be an R−module. Then

(a) Ass(M) 6= ∅ if and only if M 6= ∅;
(b) If N is a submodule of M then Ass(N) ⊆ Ass(M);
(c) Ass(M) ⊆ Supp(M) (where Supp(M) denotes the support of the

module M);
(d) If S is a multiplicatively closed subset of R then

AssS−1R(S−1M) = {S−1P |P ∈ Ass(M) with P ∩ S = ∅}.
Remark 2.2. (See [11, 1.3].) Let the zero submodule of M have a

minimal primary decomposition 0 = N1 ∩ N2 ∩ .... ∩ Nk where Ni is a
Pi−primary submodule of M for every 1 ≤ i ≤ n. Then Ass(M) =
{P1, ..., Pk} and so the prime ideals P1, ..., Pk are independent of any
minimal primary decomposition of 0.

Lemma 2.3. Let I be an ideal of R and let M be an R−module.
Let N be a P−primary submodule of M . Further assume that P ′ is a
prime ideal of R such that P is not contained in P ′. Then

(N :M I)RP ′ = NRP ′ = MRP ′ .

Proof. We first show that NRP ′ = MRP ′ . To do this let m
1 ∈MRP ′ .

By assumption we can choose an element t ∈ P such that t /∈ P ′. So
there exists a positive integer n such that

m

1
=

tnm

tn
∈ NRP ′

and this shows that NRP ′ = MRP ′ . Now, since N ⊆ (N :M I) ⊆ M ,
the claim is clear.
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Lemma 2.4. Let I be an ideal of R and M be an R−module. Then
for every multiplicatively closed subset S of R we have

S−1(I∗[M ]) ⊆ (S−1I)∗[S
−1M ].

Proof. The proof is straightforward.

Remark 2.5. Let M be an R−module and let S be a multiplicatively

closed subset of R. Let u
1 ∈ (S−1I)∗[S

−1M ]. Then there exists c
1 ∈

(S−1R)◦ such that

(0 :S−1M (S−1I)[q]) ⊆ (0 :S−1M
c

1
(
u

1
)q) for all q � 0.

By using a similar method which is used in [5, Prop. 4.14], without loss
of generality, we can assume c ∈ R◦.

Proposition 2.6. Let I be an ideal of R and M be an R−module.
Let M be a P−coprimary R−module and let S be a multiplicatively
closed subset of R. Then we have

S−1(I∗[M ]) = (S−1I)∗[S
−1M ].

Proof. This is proved in two cases. First let S ∩ P 6= ∅. Then we
can choose an element t ∈ S ∩ P and a positive integer k such that
tk ∈ S ∩ (0 : M). Let y ∈ R. Since tkM = 0, we can see tky ∈ I∗[M ] and

this shows that y
1 = tky

tk
∈ S−1I∗[M ]. Then we have S−1R ⊆ S−1(I∗[M ]).

Now by using 2.4, we have

S−1R ⊆ S−1(I∗[M ]) ⊆ (S−1I)∗[S
−1M ] ⊆ S−1R.

So in this case we have S−1(I∗[M ]) = (S−1I)∗[S
−1M ] = S−1R.

Now let S ∩ P = ∅. Let u
1 ∈ (S−1I)∗[S

−1M ]. Then there exists a
c
1 ∈ (S−1R)◦ such that

(0 :S−1M (S−1I)[q]) ⊆ (0 :S−1M
c

1
(
u

1
)q) for all q � 0.

By 2.5, we can take c ∈ R◦. Let m ∈ (0 :M I [q]) for q � 0. This implies
that

m

1
∈ (0 :S−1M (S−1I)[q]) ⊆ (0 :S−1M

c

1
(
u

1
)q).

Thus there exists tq ∈ S such that tqcu
qm = 0. Since M is a P−coprimary

R−module and S ∩ P = ∅, we can see that cuqm = 0. Then

(0 :M I [q]) ⊆ (0 :M cuq) for all q � 0.

So u ∈ I∗[M ]. Hence (S−1I)∗[S
−1M ] ⊆ S−1(I∗[M ]). The reverse inclusion

always holds by 2.4. Then S−1(I∗[M ]) = (S−1I)∗[S
−1M ].
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3. Main Results

In this section we want to study the localization of tight closure of
an ideal relative to a module whose its zero submodule has a primary
decomposition.

We note that sometimes every associated prime ideal of a module can
be isolated. For example if M is a finite length R−module or M is a
Cohen-Maculay R−module then Ass(M) has no embedded prime ideals
(see [4, 2.17] and [7, Theo. 30]).

Theorem 3.1. Let I be an ideal of R and M be an R−module.
Assume that the zero submodule of M has a minimal primary decom-
position 0 = N1 ∩N2 ∩ ... ∩Nk, where Ni is Pi−primary submodule of
M and every prime ideal in the set {P1, ..., Pk}is isolated. Then

I∗[M ] =
k⋂

i=1

I∗[M/Ni].

Proof. Let u ∈
k⋂

i=1
I∗[M/Ni]. Then for every 1 ≤ i ≤ k, there exists

ci ∈ R◦ such that

(0 :M/Ni
I [q]) ⊆ (0 :M/Ni

ciu
q) for all q � 0.

Let c = c1c2...ck. Then for every 1 ≤ i ≤ k, we have

(Ni :M I [q]) ⊆ (Ni :M cuq) for all q � 0.

This shows that

k⋂
i=1

(Ni :M I [q]) ⊆
k⋂

i=1

(Ni :M cuq) for all q � 0.

Therefore

(

k⋂
i=1

Ni :M I [q]) ⊆ (

k⋂
i=1

Ni :M cuq) for all q � 0.

This implies that u ∈ I∗[M ] and so I∗[M ] ⊇
k⋂

i=1
I∗[M/Ni].

For the reverse inclusion, let z ∈ I∗[M ]. Then there exists c ∈ R◦ such
that

(0 :M I [q]) ⊆ (0 :M czq) for all q � 0.
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This shows that
k⋂

i=1

(Ni :M I [q]) ⊆
k⋂

i=1

(Ni :M czq) for all q � 0.

By localization and using 2.3, we can see that

(Ni :M I [q])RPi ⊆ (Ni :M czq)RPi for all q � 0

for every 1 ≤ i ≤ k. This implies that

(Ni :M I [q]) ⊆ (Ni :M czq) for all q � 0

for every 1 ≤ i ≤ k. Hence

(0 :M/Ni
I [q]) ⊆ (0 :M/Ni

czq) for all q � 0

for every 1 ≤ i ≤ k. This shows that z ∈ I∗[M/Ni] for every 1 ≤ i ≤

k. So z ∈
k⋂

i=1
I∗[M/Ni]. Then I∗[M ] ⊆

k⋂
i=1

I∗[M/Ni] and so the proof is

completed.

Remark 3.2. The proof of 3.1 shows that the inclusion ⊃ holds true
without the isolated assumption on the set of associated primes.

Corollary 3.3. Let I be an ideal of R and M be an R−module.
Assume that the zero submodule of M has a minimal primary decom-
position 0 = N1 ∩N2 ∩ ... ∩Nk, where Ni is Pi−primary submodule of
M and every prime ideal in the set {P1, ..., Pk}is isolated. Then

(a) AssR(R/I∗[M ]) ⊆ {
√
I∗[M/Ni] : 1 ≤ i ≤ k}.

(b) If P1, P2, ..., Pk ∈ Max(R) then AssR(R/I∗[M ]) ⊆ {P1, P2, ..., Pk}
and so the sequence (AssR(R/(In)∗[M ]))n∈N is eventually con-
stant.

Proof. (a) By 3.1, we have

I∗[M ] =
n⋂

i=1

I∗[M/Ni].

So it suffices to prove that if I∗[M/Ni] 6= R then I∗[M/Ni] is a primary

ideal of R. For x, y in R, let xy ∈ I∗[M/Ni] and y /∈
√
I∗[M/Ni].

We know AnnR(M/Ni) ⊆ I∗[M/Ni]. Then y /∈
√
I∗[M/Ni] implies that

y /∈
√
AnnR(M/Ni). Since xy ∈ I∗[M/Ni], there exists a c ∈ R◦ such

that

(0 :M/Ni
I [q]) ⊆ (0 :M/Ni

c(xy)q) for all q � 0.
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Now since Ni is Pi−primary submodule of M and y /∈
√
AnnR(M/Ni),

it is easy to see that

(0 :M/Ni
I [q]) ⊆ (0 :M/Ni

cxq) for all q � 0.

Then x ∈ I∗[M/Ni] and this shows that if I∗[M/Ni] 6= R then I∗[M/Ni] is a
primary ideal of R.

(b) Let P1, P2, ..., Pk ∈ Max(R) and I∗[M/Ni] 6= R. Since Pi ∈
Max(R) and (Ni :R M) ⊆ I∗[M/Ni], we can see√

I∗[M/Ni] =
√

(Ni :R M) = Pi.

By [1, 2.17(a)], the sequence (AssR(R/(In)∗[M ]))n∈N is an increasing
sequence and so the proof is completed.

Theorem 3.4. Let I be an ideal of R and M be an R−module
such that its zero submodule has a primary decomposition. Moreover
assume that, every prime ideal of Ass(M) is isolated. Also, let S be a
multiplicatively closed subset of R. Then

S−1(I∗[M ]) = (S−1I)∗[S
−1M ].

Proof. Let 0 = N1∩N2∩ ...∩Nk be a minimal primary decomposition
of 0 where Ni is Pi−primary submodule of M for every 1 ≤ i ≤ k. Now
let S ∩Pi = ∅ for every 1 ≤ i ≤ t and S ∩Pi 6= ∅ for every t+ 1 ≤ i ≤ k.
Since every prime ideal of Ass(M) is isolated, we can conclude that

S−10 = S−1N1 ∩ S−1N2 ∩ ... ∩ S−1Nt

is a minimal primary decomposition of S−10. By 3.1, we have

(S−1I)∗[S
−1M ] =

t⋂
i=1

(S−1I)∗[S
−1M/S−1Ni].

Also, by 3.1, we have

S−1(I∗[M ]) = (
t⋂

i=1

S−1I∗[M/Ni]) ∩ (
k⋂

i=t+1

S−1I∗[M/Ni])

As we saw in the proof of 2.6, since S ∩ Pi 6= ∅ for every t + 1 ≤ i ≤ k,
we have S−1I∗[M/Ni] = S−1R for every t + 1 ≤ i ≤ k. This shows that

S−1(I∗[M ]) = (

t⋂
i=1

S−1I∗[M/Ni]).

Now, by using 2.6, we have S−1(I∗[M ]) = (S−1I)∗[S
−1M ].
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Example 3.5. Let R be an Artinian ring and let M be an R−module
(not necessary Noetherian R−module). By [9, 2.8], the zero submodule
of M has a primary decomposition. Since R is an Artinian ring, every
prime ideal of Ass(M) is isolated.

For secondary representation and attached primes, we can see [6].

Corollary 3.6. Let I be an ideal of R and M be an R−module such
that M has a secondary representation and MinAtt(M) = Att(M).
Moreover let S be a multiplicatively closed subset of R and let E be an
injective cogenerator R−module. If D(M) = HomR(M,E) is the dual
of M relative E then

S−1(I∗[D(M)]) = (S−1I)∗[S
−1D(M)].

In particular, if M is a finitely presented module then

S−1(I∗[D(M)]) = (S−1I)∗[D(S−1M)].

Proof. We can conclude from [9, 2.6(1)] and [2, IV, §1, Ex. 17(g)]that
D(M) has a primary decomposition and Ass(D(M)) = Att(M). Then
by 3.4, we can see that

S−1(I∗[D(M)]) = (S−1I)∗[S
−1D(M)].

Now the last part is clear by [7, 1.G] and [8, §18 Lem. 5].
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