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ENVELOPES OF SUBMODULES

Dawood Hassanzadeh-lelekaami

Abstract. We introduce and investigate envelope of submodules.
We show that the proper envelopes of certain submodules is a union
of prime submodules.

1. INTRODUCTION

We always assume that A is a commutative ring with nonzero identity
and B is a unitary A-module. Also, a denotes a proper ideal of A. We
define the envelope of a submodule N of an A-module B with respect
to an ideal a of A to be the set of all elements m of B such that there
exists an element r of R \ a and rm ∈ N . This is a generalization of
torsion subset T (B) of B. We use this notion to provide some results
on prime submodules. For example, we show that the envelope of some
submodule respect to some ideal is a union of prime submodules.

2. MAIN RESULTS

Definition 2.1. Let N be a submodule of B. We define the envelope
of N with respect to a as following

Ea(N) = {m ∈ B | ∃r ∈ R \ a; rm ∈ N} =
⋃
r 6∈a

(N :B r).

We say N is a-closed if Ea(N) = N .

Envelope of a submodule is no longer a submodule in general. For
example, let A = B = Z and N = a = 6Z. Then it is easy to see that
2, 3 ∈ Ea(N) but 2+3 6∈ Ea(N). However, if p is a prime ideal of A, then
it is easy to see that Ep(N) is submodule. Moreover, if Ep(N) 6= B, then
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it is a prime submodule of B (see [5]). The next proposition provides
simple conditions under which envelope Ea(N) of N is submodule.

Proposition 2.2. Let Ea(a) =
√
a and let it is a principal ideal of

A. Then for each submodule L of B, Ea(L) is a submodule of B.

Proof. Suppose that Ea(a) = Ax for some x ∈ A and Ea(L) is not a
submodule of B. Then there exist m1,m2 ∈ Ea(L) such that m1 +m2 6∈
Ea(L). By definition, there are elements s1, s2 ∈ A\a such that s1m1 ∈ L
and s2m2 ∈ L. Hence, s1s2(m1 + m2) ∈ L and m1 + m2 6∈ Ea(L).
Therefore, s1s2 ∈ a. This implies that s1, s2 ∈ Ea(a). Since x ∈

√
a,

there are positive integers t1, t2 such that s1 = axt1 and s2 = bxt2 ,
for some a, b 6∈ Ea(a). Without loss of generality, we may assume that
t1 ≥ t2. Since b 6∈ Ea(a) and s1 ∈ A \ a, the element bs1 does not belong
to a and therefore bs1(m1 +m2) ∈ L. This yields that m1 +m2 ∈ Ea(L),
a contradiction.

Example 2.3. Let A = Z be the ring of integers and a = 4Z be
the principal ideal generated by 4 ∈ Z. Then Ea(a) =

√
4Z = 2Z. By

Theorem 2.2, for each A-module M and each submodule L of M , Ea(L)
is a submodule of M .

In the next theorem, we show that the envelope of some submodules
of a flat modules is submodule. This theorem is a generalization of a
useful and well-known result in the theory of prime submodules (see [3,
Theorem 3]).

Theorem 2.4. Let q be an a-closed ideal of A for some ideal a of A
and let B be a flat A-module. Then Ea(qB) = qB.

Proof. We prove the theorem in three steps.
Step 1: We claim that q = (q :A x) for each element x ∈ A \ a. It is
obvious that q ⊆ (q :A x). So, let y ∈ (q :A x). Then xy ∈ q. Thus
y ∈ Ea(q) = q, since x ∈ A \ a and q is a-closed.
Step 2: Let x ∈ A \ a and consider the exact sequence of A-modules

0 −→ (q :A x)

q

f−→ A

q

g−→ A

q

where f is the canonical injection mapping and g is the mapping ob-
tained by taking quotients under multiplication by x. Since, B is flat
we have the following exact sequence

0 −→ (q :A x)

q
⊗B

f⊗1B−−−→ A

q
⊗B

g⊗1B−−−→ A

q
⊗B.
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Since A
q ⊗B ∼= B

qB and Img(f ⊗ 1B) = Ker(g ⊗ 1B) we have

(q :A x)B = (qB :B x).

Step 3: Suppose that m ∈ Ea(qB). Then there exists r ∈ A \ a such
that m ∈ (qB :B r). On account of Step 2, we have m ∈ (q :A r)B.
From Step 1 we conclude that m ∈ qB. This completes the proof.

Let L be a submodule of B. Then L is called prime if L is proper
and if tl ∈ L (where (t, l) ∈ A×B), then t ∈ Ann(B/L) or l ∈ L. If L is
prime, then ideal p := Ann(B/L) is prime and L is said to be p-prime
(see [3, 6]). If B has no prime submodule, then B is said to be primeless.

Lemma 2.5. Let N be a submodule of B. Then the following state-
ments hold.

1. If N is a prime submodule and a ⊇ (N :A B), then Ea(N) = N . In
particular, E(N :AB)(N) = N if and only if N is a prime submodule.

2. If N is a primary submodule and a ⊇
√

(N :A B), then Ea(N) =
N . In particular, E√

(N :AB)
(N) = N if and only if N is a primary

submodule.

Proof. It is easy.

Lemma 2.5 shows that every p-primary (also p-prime) submodule is p-
closed. As we mentioned, Theorem 2.4 is a generalization of [3, Theorem
3]. Using the notion of envelope of submodule we provide a new proof
of [3, Theorem 3].

Corollary 2.6. Let B be a flat A-module and p be a prime ideal
of A such that pB 6= B. If q is a p-primary ideal of A, then qB is a
p-primary submodule of B. In particular, pB is a p-prime submodule.

Proof. The ideal q is a p-closed ideal of A by Lemma 2.5. According
to Theorem 2.4 we have qB = Ep(qB). It is easy to verify that Ep(qB)
(resp. Ep(pB)) is a p-primary (resp. p-prime) submodule of B.

Since each projective module is flat, the next corollary is a general-
ization of [1, Theorem 2.2].

Corollary 2.7. Let B be a projective A-module. Then either qB =
B or qB is a p-primary submodule of B for every p-primary ideal q of
A.

Proof. Let qB 6= B. By Lemma 2.5, q is a p-closed ideal of A.
Since each projective module is flat, it follows from Theorem 2.4 that
Ep(qB) = qB. Now, the result follows from Lemma 2.5(2).
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It is shown in [3, Theorem 2] that if B is a faithful Noetherian A-
module, then for every prime ideal p of A there is a prime submodule
N of B such that (N :A B) = p. McCasland and Moore proved this
result for finitely generated (not necessarily Noetherian) modules in [6,
Theorem 3.3]. Also, it is proved in [4, Lemma, p.3746] using a different
method. We are going to present a generalization of this result.

Theorem 2.8. Let B be a finitely generated A-module and a be a
prime ideal of A. Then for every a-closed ideal q of A containing Ann(B),
there is an a-closed submodule Q of B such that (Q :A B) =

√
q.

Proof. Suppose that q ⊇ Ann(B) is an a-closed ideal of A. We claim
that

√
q is a-closed. Let x ∈ Ea(

√
q). Then there exists y ∈ A \ a such

that

x ∈
√

(
√
q :A Ay) = (

√
q :A

√
Ay) =

√
(q :A Ay).

Hence, xn ∈ (q :A Ay) for some integer n. This yields that x ∈ √q, since
q is an a-closed ideal of A. Therefore,

√
q is a-closed.

From [3, Proposition 8], we have

(
√
qB :A B) =

√
q.(1)

We claim that Ea(
√
qB) is the desired a-closed submodule of B such

that (Ea(
√
qB) :A B) =

√
q. Obviously, we have Ea(

√
qB :A B) ⊆

(Ea(
√
qB) :A B). Now, let g ∈ (Ea(

√
qB) :A B) and B = (b1, . . . , bn).

Then gbi ∈ Ea(
√
qB) for each 1 ≤ i ≤ n. So, there are r1, . . . , rn ∈ R \ a

such that rigbi ∈
√
qB for each 1 ≤ i ≤ n. Since r := r1 · · · rn ∈ R \ a

and rgbi ∈
√
qB for each 1 ≤ i ≤ n, we infer that rg ∈ (

√
qB :A B).

This implies that g ∈ Ea(
√
qB :A B). Consequently, By (1) we have

(Ea(
√
qB) :A B) = Ea(

√
qB :A B) = Ea(

√
q) =

√
q.

This completes the proof.

Corollary 2.9. Let B be a nonzero finitely generated A-module.
Then for each prime ideal p of A containing Ann(B), there exists a
p-prime submodule of B.

Proof. Let p ⊇ Ann(B). By Lemma 2.5, p is p-closed. There exists a
p-closed submodule Q of B by Theorem 2.8 such that (Q :A B) =

√
p =

p. Lemma 2.5 implies that Q is prime.

It is shown in [2, Theorem 3.3] that if the torsion set T (B) of a module
B is a proper set, then it is a union of prime submodules. We are going
to use the notion of envelope to provide a similar result.
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Lemma 2.10. Let L be a submodule of B such that Ea(L) 6= B,
where a := (L :A B) and

S = {N ≤ B |N ⊆ Ea(L) and N =
⋃
a∈D

(L :B a) for some D ⊆ A}.

Then each maximal element of S is a prime submodule of B.

Proof. Let P be a maximal element of S. Then there exists a subset
D of A such that

P =
⋃
b∈D

(L :B b).

We are going to show that P is a prime submodule of B. Suppose that
(r,m) ∈ A × B such that m 6∈ P and rm ∈ P . We must show that
r ∈ (P :A B).

First, suppose that rb 6∈ a for each element b ∈ D. Let Q :=⋃
b∈D(L :B rb). Then, by definition, P ⊆ Q ⊆ Ea(L). We claim that Q is

a submodule of B. If s ∈ A and q ∈ Q, then it is easy to see that sq ∈ Q.
Hence, suppose that m1,m2 ∈ Q. Then there are b1, b2 ∈ D such that
mi ∈ (L :B rbi) for each i = 1, 2. Therefore, rmi ∈ (L :B bi) ⊆ P for
each i = 1, 2, because bi 6∈ a. This implies that

rm1 + rm2 ∈ P.

So, there exists b3 ∈ D such that rm1 + rm2 ∈ (L :B b3). Thus,

m1 + m2 ∈ (L :B rb3) ⊆ Q.

This implies that Q is a submodule of B and by maximality of P we
have Q = P ⊆ Ea(L) 6= B.

Since rm ∈ P , there is c ∈ D such that rm ∈ (L :B c). Thus,

m ∈ (L :B rc) ⊆ Q ⊆ P,

a contradiction. Hence, we assume that rb ∈ a for some b ∈ D. This
yields that

rbB ⊆ aB ⊆ L.

Therefore, rB ⊆ (L :B b) ⊆ P . So, P is a prime submodule of B.

Theorem 2.11. Let L be a submodule of an A-module B and let
a := (L :A B). If Ea(L) 6= B, then Ea(L) is a union of prime submodules
of B.

Proof. Let m ∈ Ea(L) and

Sm := {N ≤ B|m ∈ N ⊆ Ea(L) and N =
⋃
a∈D

(L :B a) for some D ⊆ A}.
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By definition, there exists r ∈ A \ a such that rm ∈ L. Thus,

m ∈ (L :B r) ⊆ Ea(L).

Hence, Sm 6= ∅. Now, an easy application of Zorn’s Lemma shows
that Sm has a maximal element Pm. By Lemma 2.10, Pm is a prime
submodule of B. This completes the proof.

Example 2.12. Consider the Z-module M = Z × Z and let N =
6Z × 12Z and a = 12Z. Then Ea(N) is a proper subset of M , since
(5, 7) ∈ M \ Ea(N). Also, note that, Ea(N) is not a submodule of M ,
since (2, 0), (0, 3) ∈ Ea(N) but (2, 3) 6∈ Ea(N). By Theorem 2.11, Ea(N)
is a union of prime submodules. Indeed, it is easy to see that 2M and
3M are prime submodules of M and Ea(N) = 2M ∪ 3M .

We Conclude the paper with some results on primeless modules. It is
shown in [7, Lemma 1.3], if A is an integral domain and B is a primeless
A-module, then B is torsion. Using Theorem 2.11, we can extend this
result.

Corollary 2.13. B is primeless if and only if Ea(aB) = B for each
ideal a of A. In particular, if B is primeless, then it is torsion.

Proof. Let B be primeless. Then by Theorem 2.11, Ea(aB) = B for
each ideal a of A. Now, suppose that Ea(aB) = B for each ideal a of A
and P be a p-prime submodule of B. Then

B = Ep(pB) ⊆ Ep(P ) = P $ B,

a contradiction.

Corollary 2.14. Let A be a one-dimensional Noetherian integral
domain. Then B is torsion divisible if and only if Ea(aB) = B for each
ideal a of A.

Proof. Let Ea(aB) = B for each ideal a of A. Then it is primeless
by Corollary 2.13. It follows from [7, Proposition 1.4] that B is torsion
divisible.

On the other hand, if B is torsion divisible, then B is primeless by [7,
Proposition 1.4]. So, Corollary 2.13 implies that Ea(aB) = B for each
ideal a of A.
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