ENVELOPES OF SUBMODULES

Dawood Hassanzadeh-lelekaami

Abstract

We introduce and investigate envelope of submodules. We show that the proper envelopes of certain submodules is a union of prime submodules.

1. INTRODUCTION

We always assume that A is a commutative ring with nonzero identity and B is a unitary A-module. Also, a denotes a proper ideal of A. We define the envelope of a submodule N of an A-module B with respect to an ideal \mathfrak{a} of A to be the set of all elements m of B such that there exists an element r of $R \backslash \mathfrak{a}$ and $r m \in N$. This is a generalization of torsion subset $T(B)$ of B. We use this notion to provide some results on prime submodules. For example, we show that the envelope of some submodule respect to some ideal is a union of prime submodules.

2. MAIN RESULTS

Definition 2.1. Let N be a submodule of B. We define the envelope of N with respect to \mathfrak{a} as following

$$
E_{\mathfrak{a}}(N)=\{m \in B \mid \exists r \in R \backslash \mathfrak{a} ; r m \in N\}=\bigcup_{r \notin \mathfrak{a}}\left(N:_{B} r\right) .
$$

We say N is \mathfrak{a}-closed if $E_{\mathfrak{a}}(N)=N$.
Envelope of a submodule is no longer a submodule in general. For example, let $A=B=\mathbb{Z}$ and $N=\mathfrak{a}=6 \mathbb{Z}$. Then it is easy to see that $2,3 \in E_{\mathfrak{a}}(N)$ but $2+3 \notin E_{\mathfrak{a}}(N)$. However, if \mathfrak{p} is a prime ideal of A, then it is easy to see that $E_{\mathfrak{p}}(N)$ is submodule. Moreover, if $E_{\mathfrak{p}}(N) \neq B$, then

[^0]it is a prime submodule of B (see [5]). The next proposition provides simple conditions under which envelope $E_{\mathfrak{a}}(N)$ of N is submodule.

Proposition 2.2. Let $E_{\mathfrak{a}}(\mathfrak{a})=\sqrt{\mathfrak{a}}$ and let it is a principal ideal of A. Then for each submodule L of $B, E_{\mathfrak{a}}(L)$ is a submodule of B.

Proof. Suppose that $E_{\mathfrak{a}}(\mathfrak{a})=A x$ for some $x \in A$ and $E_{\mathfrak{a}}(L)$ is not a submodule of B. Then there exist $m_{1}, m_{2} \in E_{\mathfrak{a}}(L)$ such that $m_{1}+m_{2} \notin$ $E_{\mathfrak{a}}(L)$. By definition, there are elements $s_{1}, s_{2} \in A \backslash \mathfrak{a}$ such that $s_{1} m_{1} \in L$ and $s_{2} m_{2} \in L$. Hence, $s_{1} s_{2}\left(m_{1}+m_{2}\right) \in L$ and $m_{1}+m_{2} \notin E_{\mathfrak{a}}(L)$. Therefore, $s_{1} s_{2} \in \mathfrak{a}$. This implies that $s_{1}, s_{2} \in E_{\mathfrak{a}}(\mathfrak{a})$. Since $x \in \sqrt{\mathfrak{a}}$, there are positive integers t_{1}, t_{2} such that $s_{1}=a x^{t_{1}}$ and $s_{2}=b x^{t_{2}}$, for some $a, b \notin E_{\mathfrak{a}}(\mathfrak{a})$. Without loss of generality, we may assume that $t_{1} \geq t_{2}$. Since $b \notin E_{\mathfrak{a}}(\mathfrak{a})$ and $s_{1} \in A \backslash \mathfrak{a}$, the element $b s_{1}$ does not belong to \mathfrak{a} and therefore $b s_{1}\left(m_{1}+m_{2}\right) \in L$. This yields that $m_{1}+m_{2} \in E_{\mathfrak{a}}(L)$, a contradiction.

Example 2.3. Let $A=\mathbb{Z}$ be the ring of integers and $\mathfrak{a}=4 \mathbb{Z}$ be the principal ideal generated by $4 \in \mathbb{Z}$. Then $E_{\mathfrak{a}}(\mathfrak{a})=\sqrt{4 \mathbb{Z}}=2 \mathbb{Z}$. By Theorem 2.2, for each A-module M and each submodule L of $M, E_{\mathfrak{a}}(L)$ is a submodule of M.

In the next theorem, we show that the envelope of some submodules of a flat modules is submodule. This theorem is a generalization of a useful and well-known result in the theory of prime submodules (see [3, Theorem 3]).

Theorem 2.4. Let \mathfrak{q} be an \mathfrak{a}-closed ideal of A for some ideal \mathfrak{a} of A and let B be a flat A-module. Then $E_{\mathfrak{a}}(\mathfrak{q} B)=\mathfrak{q} B$.

Proof. We prove the theorem in three steps.
Step 1: We claim that $\mathfrak{q}=\left(\mathfrak{q}:_{A} x\right)$ for each element $x \in A \backslash \mathfrak{a}$. It is obvious that $\mathfrak{q} \subseteq\left(\mathfrak{q}:_{A} x\right)$. So, let $y \in\left(\mathfrak{q}:_{A} x\right)$. Then $x y \in \mathfrak{q}$. Thus $y \in E_{\mathfrak{a}}(\mathfrak{q})=\mathfrak{q}$, since $x \in A \backslash \mathfrak{a}$ and \mathfrak{q} is \mathfrak{a}-closed.
Step 2: Let $x \in A \backslash \mathfrak{a}$ and consider the exact sequence of A-modules

$$
0 \longrightarrow \frac{\left(\mathfrak{q}:_{A} x\right)}{\mathfrak{q}} \xrightarrow{f} \frac{A}{\mathfrak{q}} \xrightarrow{g} \frac{A}{\mathfrak{q}}
$$

where f is the canonical injection mapping and g is the mapping obtained by taking quotients under multiplication by x. Since, B is flat we have the following exact sequence

$$
0 \longrightarrow \frac{\left(\mathfrak{q}:_{A} x\right)}{\mathfrak{q}} \otimes B \xrightarrow{f \otimes 1_{B}} \frac{A}{\mathfrak{q}} \otimes B \xrightarrow{\underline{g} \otimes 1_{B}} \frac{A}{\mathfrak{q}} \otimes B .
$$

Since $\frac{A}{\mathfrak{q}} \otimes B \cong \frac{B}{\mathfrak{q} B}$ and $\operatorname{Img}\left(f \otimes 1_{B}\right)=\operatorname{Ker}\left(g \otimes 1_{B}\right)$ we have

$$
\left(\mathfrak{q}:_{A} x\right) B=\left(\mathfrak{q} B:_{B} x\right)
$$

Step 3: Suppose that $m \in E_{\mathfrak{a}}(\mathfrak{q} B)$. Then there exists $r \in A \backslash \mathfrak{a}$ such that $m \in\left(\mathfrak{q} B:_{B} r\right)$. On account of Step 2, we have $m \in\left(\mathfrak{q}:_{A} r\right) B$. From Step 1 we conclude that $m \in \mathfrak{q} B$. This completes the proof.

Let L be a submodule of B. Then L is called prime if L is proper and if $t l \in L$ (where $(t, l) \in A \times B$), then $t \in \operatorname{Ann}(B / L)$ or $l \in L$. If L is prime, then ideal $\mathfrak{p}:=\operatorname{Ann}(B / L)$ is prime and L is said to be \mathfrak{p}-prime (see $[3,6]$). If B has no prime submodule, then B is said to be primeless.

Lemma 2.5. Let N be a submodule of B. Then the following statements hold.

1. If N is a prime submodule and $\mathfrak{a} \supseteq\left(N:_{A} B\right)$, then $E_{\mathfrak{a}}(N)=N$. In particular, $E_{\left(N:_{A} B\right)}(N)=N$ if and only if N is a prime submodule.
2. If N is a primary submodule and $\mathfrak{a} \supseteq \sqrt{\left(N:_{A} B\right)}$, then $E_{\mathfrak{a}}(N)=$ N. In particular, $E_{\sqrt{\left(N:_{A} B\right)}}(N)=N$ if and only if N is a primary submodule.

Proof. It is easy.
Lemma 2.5 shows that every \mathfrak{p}-primary (also \mathfrak{p}-prime) submodule is \mathfrak{p} closed. As we mentioned, Theorem 2.4 is a generalization of [3, Theorem 3]. Using the notion of envelope of submodule we provide a new proof of [3, Theorem 3].

Corollary 2.6. Let B be a flat A-module and \mathfrak{p} be a prime ideal of A such that $\mathfrak{p} B \neq B$. If \mathfrak{q} is a \mathfrak{p}-primary ideal of A, then $\mathfrak{q} B$ is a \mathfrak{p}-primary submodule of B. In particular, $\mathfrak{p} B$ is a \mathfrak{p}-prime submodule.

Proof. The ideal \mathfrak{q} is a \mathfrak{p}-closed ideal of A by Lemma 2.5. According to Theorem 2.4 we have $\mathfrak{q} B=E_{\mathfrak{p}}(\mathfrak{q} B)$. It is easy to verify that $E_{\mathfrak{p}}(\mathfrak{q} B)$ (resp. $\left.E_{\mathfrak{p}}(\mathfrak{p} B)\right)$ is a \mathfrak{p}-primary (resp. \mathfrak{p}-prime) submodule of B.

Since each projective module is flat, the next corollary is a generalization of [1, Theorem 2.2].

Corollary 2.7. Let B be a projective A-module. Then either $\mathfrak{q} B=$ B or $\mathfrak{q} B$ is a \mathfrak{p}-primary submodule of B for every \mathfrak{p}-primary ideal \mathfrak{q} of A.

Proof. Let $\mathfrak{q} B \neq B$. By Lemma 2.5, \mathfrak{q} is a \mathfrak{p}-closed ideal of A. Since each projective module is flat, it follows from Theorem 2.4 that $E_{\mathfrak{p}}(\mathfrak{q} B)=\mathfrak{q} B$. Now, the result follows from Lemma 2.5(2).

It is shown in [3, Theorem 2] that if B is a faithful Noetherian A module, then for every prime ideal \mathfrak{p} of A there is a prime submodule N of B such that $\left(N:_{A} B\right)=\mathfrak{p}$. McCasland and Moore proved this result for finitely generated (not necessarily Noetherian) modules in [6, Theorem 3.3]. Also, it is proved in [4, Lemma, p.3746] using a different method. We are going to present a generalization of this result.

Theorem 2.8. Let B be a finitely generated A-module and \mathfrak{a} be a prime ideal of A. Then for every \mathfrak{a}-closed ideal \mathfrak{q} of A containing $\operatorname{Ann}(B)$, there is an \mathfrak{a}-closed submodule Q of B such that $\left(Q:_{A} B\right)=\sqrt{\mathfrak{q}}$.

Proof. Suppose that $\mathfrak{q} \supseteq \operatorname{Ann}(B)$ is an \mathfrak{a}-closed ideal of A. We claim that $\sqrt{\mathfrak{q}}$ is \mathfrak{a}-closed. Let $x \in E_{\mathfrak{a}}(\sqrt{\mathfrak{q}})$. Then there exists $y \in A \backslash \mathfrak{a}$ such that

$$
x \in \sqrt{\left(\sqrt{\mathfrak{q}}:_{A} A y\right)}=\left(\sqrt{\mathfrak{q}}:_{A} \sqrt{A y}\right)=\sqrt{\left(\mathfrak{q}:_{A} A y\right)}
$$

Hence, $x^{n} \in\left(\mathfrak{q}:_{A} A y\right)$ for some integer n. This yields that $x \in \sqrt{\mathfrak{q}}$, since \mathfrak{q} is an \mathfrak{a}-closed ideal of A. Therefore, $\sqrt{\mathfrak{q}}$ is \mathfrak{a}-closed.

From [3, Proposition 8], we have

$$
\begin{equation*}
\left(\sqrt{\mathfrak{q}} B:_{A} B\right)=\sqrt{\mathfrak{q}} . \tag{1}
\end{equation*}
$$

We claim that $E_{\mathfrak{a}}(\sqrt{\mathfrak{q}} B)$ is the desired \mathfrak{a}-closed submodule of B such that $\left(E_{\mathfrak{a}}(\sqrt{\mathfrak{q}} B):_{A} B\right)=\sqrt{\mathfrak{q}}$. Obviously, we have $E_{\mathfrak{a}}\left(\sqrt{\mathfrak{q}} B:_{A} B\right) \subseteq$ $\left(E_{\mathfrak{a}}(\sqrt{\mathfrak{q}} B):_{A} B\right)$. Now, let $g \in\left(E_{\mathfrak{a}}(\sqrt{\mathfrak{q}} B):_{A} B\right)$ and $B=\left(b_{1}, \ldots, b_{n}\right)$. Then $g b_{i} \in E_{\mathfrak{a}}(\sqrt{\mathfrak{q}} B)$ for each $1 \leq i \leq n$. So, there are $r_{1}, \ldots, r_{n} \in R \backslash \mathfrak{a}$ such that $r_{i} g b_{i} \in \sqrt{\mathfrak{q}} B$ for each $1 \leq i \leq n$. Since $r:=r_{1} \cdots r_{n} \in R \backslash \mathfrak{a}$ and $r g b_{i} \in \sqrt{\mathfrak{q}} B$ for each $1 \leq i \leq n$, we infer that $r g \in\left(\sqrt{\mathfrak{q}} B:_{A} B\right)$. This implies that $g \in E_{\mathfrak{a}}\left(\sqrt{\mathfrak{q}} B:_{A} B\right)$. Consequently, By (1) we have

$$
\left(E_{\mathfrak{a}}(\sqrt{\mathfrak{q}} B):_{A} B\right)=E_{\mathfrak{a}}\left(\sqrt{\mathfrak{q}} B:_{A} B\right)=E_{\mathfrak{a}}(\sqrt{\mathfrak{q}})=\sqrt{\mathfrak{q}}
$$

This completes the proof.
Corollary 2.9. Let B be a nonzero finitely generated A-module. Then for each prime ideal \mathfrak{p} of A containing $\operatorname{Ann}(B)$, there exists a \mathfrak{p}-prime submodule of B.

Proof. Let $\mathfrak{p} \supseteq \operatorname{Ann}(B)$. By Lemma 2.5, \mathfrak{p} is \mathfrak{p}-closed. There exists a \mathfrak{p}-closed submodule Q of B by Theorem 2.8 such that $\left(Q:_{A} B\right)=\sqrt{\mathfrak{p}}=$ \mathfrak{p}. Lemma 2.5 implies that Q is prime.

It is shown in [2, Theorem 3.3] that if the torsion set $T(B)$ of a module B is a proper set, then it is a union of prime submodules. We are going to use the notion of envelope to provide a similar result.

Lemma 2.10. Let L be a submodule of B such that $E_{\mathfrak{a}}(L) \neq B$, where $\mathfrak{a}:=(L: A B)$ and

$$
S=\left\{N \leq B \mid N \subseteq E_{\mathfrak{a}}(L) \text { and } N=\bigcup_{a \in D}\left(L:_{B} a\right) \text { for some } D \subseteq A\right\}
$$

Then each maximal element of S is a prime submodule of B.
Proof. Let P be a maximal element of S. Then there exists a subset D of A such that

$$
P=\bigcup_{b \in D}\left(L:_{B} b\right)
$$

We are going to show that P is a prime submodule of B. Suppose that $(r, m) \in A \times B$ such that $m \notin P$ and $r m \in P$. We must show that $r \in\left(P:_{A} B\right)$.

First, suppose that $r b \notin \mathfrak{a}$ for each element $b \in D$. Let $Q:=$ $\bigcup_{b \in D}\left(L:_{B} r b\right)$. Then, by definition, $P \subseteq Q \subseteq E_{\mathfrak{a}}(L)$. We claim that Q is a submodule of B. If $s \in A$ and $q \in Q$, then it is easy to see that $s q \in Q$. Hence, suppose that $m_{1}, m_{2} \in Q$. Then there are $b_{1}, b_{2} \in D$ such that $m_{i} \in\left(L:_{B} r b_{i}\right)$ for each $i=1,2$. Therefore, $r m_{i} \in\left(L:_{B} b_{i}\right) \subseteq P$ for each $i=1,2$, because $b_{i} \notin \mathfrak{a}$. This implies that

$$
r m_{1}+r m_{2} \in P .
$$

So, there exists $b_{3} \in D$ such that $r m_{1}+r m_{2} \in\left(L:_{B} b_{3}\right)$. Thus,

$$
m_{1}+m_{2} \in\left(L:_{B} r b_{3}\right) \subseteq Q
$$

This implies that Q is a submodule of B and by maximality of P we have $Q=P \subseteq E_{\mathfrak{a}}(L) \neq B$.

Since $r m \in P$, there is $c \in D$ such that $r m \in\left(L:_{B} c\right)$. Thus,

$$
m \in\left(L:_{B} r c\right) \subseteq Q \subseteq P
$$

a contradiction. Hence, we assume that $r b \in \mathfrak{a}$ for some $b \in D$. This yields that

$$
r b B \subseteq \mathfrak{a} B \subseteq L
$$

Therefore, $r B \subseteq\left(L:_{B} b\right) \subseteq P$. So, P is a prime submodule of B.
Theorem 2.11. Let L be a submodule of an A-module B and let $\mathfrak{a}:=\left(L:_{A} B\right)$. If $E_{\mathfrak{a}}(L) \neq B$, then $E_{\mathfrak{a}}(L)$ is a union of prime submodules of B.

Proof. Let $m \in E_{\mathfrak{a}}(L)$ and
$S_{m}:=\left\{N \leq B \mid m \in N \subseteq E_{\mathfrak{a}}(L)\right.$ and $N=\bigcup_{a \in D}\left(L:_{B} a\right)$ for some $\left.D \subseteq A\right\}$.

By definition, there exists $r \in A \backslash \mathfrak{a}$ such that $r m \in L$. Thus,

$$
m \in\left(L:_{B} r\right) \subseteq E_{\mathfrak{a}}(L) .
$$

Hence, $S_{m} \neq \emptyset$. Now, an easy application of Zorn's Lemma shows that S_{m} has a maximal element P_{m}. By Lemma 2.10, P_{m} is a prime submodule of B. This completes the proof.

Example 2.12. Consider the \mathbb{Z}-module $M=\mathbb{Z} \times \mathbb{Z}$ and let $N=$ $6 \mathbb{Z} \times 12 \mathbb{Z}$ and $\mathfrak{a}=12 \mathbb{Z}$. Then $E_{\mathfrak{a}}(N)$ is a proper subset of M, since $(5,7) \in M \backslash E_{\mathfrak{a}}(N)$. Also, note that, $E_{\mathfrak{a}}(N)$ is not a submodule of M, since $(2,0),(0,3) \in E_{\mathfrak{a}}(N)$ but $(2,3) \notin E_{\mathfrak{a}}(N)$. By Theorem 2.11, $E_{\mathfrak{a}}(N)$ is a union of prime submodules. Indeed, it is easy to see that $2 M$ and $3 M$ are prime submodules of M and $E_{\mathfrak{a}}(N)=2 M \cup 3 M$.

We Conclude the paper with some results on primeless modules. It is shown in [7, Lemma 1.3], if A is an integral domain and B is a primeless A-module, then B is torsion. Using Theorem 2.11, we can extend this result.

Corollary 2.13. B is primeless if and only if $E_{\mathfrak{a}}(\mathfrak{a} B)=B$ for each ideal \mathfrak{a} of A. In particular, if B is primeless, then it is torsion.

Proof. Let B be primeless. Then by Theorem 2.11, $E_{\mathfrak{a}}(\mathfrak{a} B)=B$ for each ideal \mathfrak{a} of A. Now, suppose that $E_{\mathfrak{a}}(\mathfrak{a} B)=B$ for each ideal \mathfrak{a} of A and P be a \mathfrak{p}-prime submodule of B. Then

$$
B=E_{\mathfrak{p}}(\mathfrak{p} B) \subseteq E_{\mathfrak{p}}(P)=P \varsubsetneqq B,
$$

a contradiction.
Corollary 2.14. Let A be a one-dimensional Noetherian integral domain. Then B is torsion divisible if and only if $E_{\mathfrak{a}}(\mathfrak{a} B)=B$ for each ideal \mathfrak{a} of A.

Proof. Let $E_{\mathfrak{a}}(\mathfrak{a} B)=B$ for each ideal \mathfrak{a} of A. Then it is primeless by Corollary 2.13. It follows from [7, Proposition 1.4] that B is torsion divisible.

On the other hand, if B is torsion divisible, then B is primeless by $[7$, Proposition 1.4]. So, Corollary 2.13 implies that $E_{\mathfrak{a}}(\mathfrak{a} B)=B$ for each ideal \mathfrak{a} of A.

References

[1] M. Alkan and Y. Tiras, Projective modules and prime submodules, Czechoslovak Math. J. 56 (2006), no. 2, 601-611.
[2] D. D. Anderson and S. Chun, The set of torsion elements of a module, Comm. Algebra 42 (2014), 1835-1843.
[3] Chin-Pi Lu, Prime submodules of modules, Comment. Math. Univ. St. Pauli 33 (1984), no. 1, 61-69.
[4] - Spectra of modules, Comm. Algebra 23 (1995), no. 10, 3741-3752.
[5] , Saturations of submodules, Comm. Algebra 31 (2003), no. 6, 2655-2673.
[6] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra 20 (1992), no. 6, 1803-1817.
[7] R. L. McCasland, M. E. Moore, and P. F. Smith, On the spectrum of a module over a commutative ring, Comm. Algebra 25 (1997), no. 1, 79-103.

Dawood Hassanzadeh-lelekaami
Department of Basic Sciences, Arak University of Technology, P. O. Box 38135-1177, Arak, Iran.

E-mail: Dhmath@arakut.ac.ir and lelekaami@gmail.com

[^0]: Received January 3, 2017. Accepted September 28, 2017.
 2010 Mathematics Subject Classification. 13C13, 13C12.
 Key words and phrases. Envelope of submodules, Prime submodules.

