THE BRIOT-BOUQUET DIFFERENTIAL SUBORDINATION ASSOCIATED WITH VERTICAL STRIP DOMAINS

Young Jae Sim, and Oh Sang Kwon*

Abstract

For real parameters α and β such that $\alpha<1<\beta$, we denote by $\mathcal{P}(\alpha, \beta)$ the class of analytic functions p, which satisfy $p(0)=1$ and $\alpha<\mathfrak{R}\{p(z)\}<\beta$ in \mathbb{D}, where \mathbb{D} denotes the open unit disk. Let \mathcal{A} be the class of analytic functions in \mathbb{D} such that $f(0)=0=f^{\prime}(0)-1$. For $f \in \mathcal{A}, \mu \in \mathbb{C} \backslash\{0\}$ and $\nu \in \mathbb{C}$, let $I_{\mu, \nu}: \mathcal{A} \rightarrow \mathcal{A}$ be an integral operator defined by $$
I_{\mu, \nu}[f](z)=\left(\frac{\mu+\nu}{z^{\nu}} \int_{0}^{z} f^{\mu}(t) t^{\nu-1} \mathrm{~d} t\right)^{1 / \mu}
$$

In this paper, we find some sufficient conditions on functions to be in the class $\mathcal{P}(\alpha, \beta)$. One of these results is applied to the integral operator $I_{\mu, \nu}$ of two classes of starlike functions which are related to the class $\mathcal{P}(\alpha, \beta)$.

1. Introduction

Let \mathcal{H} be the class of analytic functions in the open unit disk $\mathbb{D}:=$ $\{z \in \mathbb{C}:|z|<1\}$ and let \mathcal{P} be the class of functions $p \in \mathcal{H}$ such that $p(0)=1$. For real numbers α and β such that $\alpha<1<\beta$, a function $p \in \mathcal{P}$ belongs to the class $\mathcal{P}(\alpha, \beta)$ if p satisfies the inequality $\alpha<$ $\mathfrak{R}\{p(z)\}<\beta$ in \mathbb{D}.

We say that f is subordinate to F in \mathbb{D}, written as $f \prec F$ (or $f(z) \prec$ $F(z))$ in \mathbb{D}, if and only if, $f(z)=F(w(z))$ for some Schwarz function $w(z), w(0)=0$ and $|w(z)|<1$ for $z \in \mathbb{D}$. It is well-known that $f \prec F$ is

[^0]equivalent to $f(0)=F(0)$ and $f(\mathbb{D}) \subset F(\mathbb{D})$, if F is univalent in \mathbb{D} (See [9, p. 36]).

For real numbers α and β such that $\alpha<1<\beta$, let us consider a function $p_{\alpha, \beta}: \mathbb{D} \rightarrow \mathbb{C}$ defined by

$$
\begin{equation*}
p_{\alpha, \beta}(z)=1+\mathrm{i} \frac{\beta-\alpha}{\pi} \log \left(\frac{1-e^{2 \pi \mathrm{i} \frac{1-\alpha}{\beta-\alpha}} z}{1-z}\right) \tag{1}
\end{equation*}
$$

Kuroki and Owa [5] showed that the function $p_{\alpha, \beta}$ maps \mathbb{D} onto the vertical strip domain $\Omega_{\alpha, \beta}:=\{w: \alpha<\mathfrak{R}\{w\}<\beta\}$ conformally. Therefore by the notion of subordination, $p \in \mathcal{P}(\alpha, \beta)$ can be represented by $p \prec p_{\alpha, \beta}$ in \mathbb{D}. Recently, Sim and Kwon [10] found some sufficient conditions on p so that p belongs to the class $\mathcal{P}(\alpha, \beta)$ which generalize some parts of the results due to Marx [6] and Strohhäcker [11] by using the mapping properties of the function $p_{\alpha, \beta}$.

Now, we introduce an equivalent condition for $p \in \mathcal{P}(\alpha, \beta)$.
Lemma 1.1. Let p be an analytic function in \mathbb{D} with $p(0)=1$. Then, $p \in \mathcal{P}(\alpha, \beta)$ if and only if $\mathfrak{R}\left\{\mathrm{e}^{\mathrm{i} \varphi} q(z)\right\}>0$ in \mathbb{D}, where $q: \mathbb{D} \rightarrow \mathbb{C}$ and $\varphi \in \mathbb{R}$ is defined by

$$
\begin{equation*}
q(z)=\exp \left\{\frac{\pi \mathrm{i}}{\beta-\alpha}(p(z)-1)\right\} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\varphi=-\frac{\alpha+\beta-2}{2(\beta-\alpha)} \pi \tag{3}
\end{equation*}
$$

respectively.
Proof. Let $\theta=((1-\alpha) \pi) /(\beta-\alpha)$ and consider a function $\Lambda_{\theta}: \mathbb{D} \rightarrow \mathbb{C}$ defined by $\Lambda_{\theta}=(1-z) /\left(1-\mathrm{e}^{2 \mathrm{i} \theta} z\right)$. Since

$$
\Lambda_{\theta}(\mathbb{D})=\{w \in \mathbb{C}:-\theta<\arg (w)<-\theta+\pi\}
$$

and $\mathfrak{R}\left\{w \mathrm{e}^{\mathrm{i}\left(\theta-\frac{\pi}{2}\right)}\right\}>0$ for $w \in \Lambda_{\theta}(\mathbb{D})$, we have

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \varphi} \Lambda_{\theta}(\mathbb{D})=\mathrm{e}^{\mathrm{i}(\theta-\pi / 2)} \Lambda_{\theta}(\mathbb{D})=\{w \in \mathbb{C}: \mathfrak{R}(w)>0\} \tag{4}
\end{equation*}
$$

Let $p \in \mathcal{P}(\alpha, \beta)$. Then we have $p \prec p_{\alpha, \beta}$ in \mathbb{D}, where $p_{\alpha, \beta}$ is the function given by (1). By the definition of subordination, there exists a Schwarz function $w: \mathbb{D} \rightarrow \mathbb{D}$ such that $q(z)=\Lambda_{\theta}(w(z))$. Therefore $\mathfrak{R}\left\{\mathrm{e}^{\mathrm{i} \varphi} q(z)\right\}>$ 0 in \mathbb{D} follows from (4). Conversely, if $\mathfrak{R}\left\{\mathrm{e}^{\mathrm{i} \varphi} q(z)\right\}>0$ in \mathbb{D}, then

$$
-\theta=-\frac{\pi}{2}-\varphi<\arg \{q(z)\}<\frac{\pi}{2}-\varphi=-\theta+\pi, \quad z \in \mathbb{D}
$$

That is, $q \prec \Lambda_{\theta}$ in \mathbb{D} and this is equivalent to $p \in \mathcal{P}(\alpha, \beta)$.

Let \mathcal{A} be the class of functions $f \in \mathcal{H}$ normalized by $f(0)=0=$ $f^{\prime}(0)-1$. Let $\mathcal{S}^{*}(\alpha, \beta)$ denote the class of functions in $f \in \mathcal{A}$ satisfying $z f^{\prime} / f \in \mathcal{P}(\alpha, \beta)$. It is trivial that if $\alpha \geq 0$, the functions in $\mathcal{S}^{*}(\alpha, \beta)$ are starlike.

For $f \in \mathcal{A}, \mu$ and $\nu \in \mathbb{C}$ with $\mu \neq 0$, define an integral operator $I_{\mu, \nu}: \mathcal{A} \rightarrow \mathcal{A}$ defined by

$$
\begin{equation*}
F(z):=I_{\mu, \nu}[f](z)=\left(\frac{\mu+\nu}{z^{\nu}} \int_{0}^{z} f^{\mu}(t) t^{\nu-1} \mathrm{~d} t\right)^{1 / \mu} \tag{5}
\end{equation*}
$$

If we put $\mu=1$ in (5), then the operator $I_{\mu, \nu}$ reduces the well known one called Bernardi's integral operator [2]. Let us put $p=z F^{\prime} / F$. Then simple calculations leads us to the Briot-Bouquet differential equation $p(z)+z p^{\prime}(z) /(\mu p(z)+\nu)=h(z)$, where h is defined by $h=z f^{\prime} / f$.

Now, for given α and β such that $\alpha<1<\beta, \mu \in \mathbb{C} \backslash\{0\}$ and $\nu \in \mathbb{C}$, let us define η_{*} and η^{*} by

$$
\eta_{*}=\eta_{*}(\alpha, \beta, \mu, \nu):=\inf \left\{\tilde{\eta}<1: f \in \mathcal{S}^{*}(\tilde{\eta}, \hat{\eta}) \Rightarrow I_{\mu, \nu}[f] \in \mathcal{S}^{*}(\alpha, \beta)\right\}
$$

and

$$
\eta^{*}=\eta^{*}(\alpha, \beta, \mu, \nu):=\sup \left\{\hat{\eta}>1: f \in \mathcal{S}^{*}(\tilde{\eta}, \hat{\eta}) \Rightarrow I_{\mu, \nu}[f] \in \mathcal{S}^{*}(\alpha, \beta)\right\}
$$

Since the function $p_{\alpha, \beta}$ is a convex univalent function in \mathbb{D}, by applying the results on the Briot-Bouquet differential subordinations due to Eenigenburg et al. [3] (See also [8]) with $h=p_{\alpha, \beta}$, we can obtain the following implication:

$$
\alpha<\mathfrak{R}\left\{p(z)+\frac{z p^{\prime}(z)}{\mu p(z)+\nu}\right\}<\beta \Longrightarrow \alpha<\mathfrak{R}\{p(z)\}<\beta, \quad z \in \mathbb{D}
$$

whenever $\mu \geq 0$ and $\mathfrak{R}\{\mu \alpha+\nu\}>0$. Namely, $\eta_{*} \leq \alpha$ and $\eta^{*} \geq \beta$. And, in [1], Attiya and Bulboacă generalized this implication by using the Janowski's type.

Motivated by the above, the purpose of this paper is to find the bounds of η_{*} and η^{*}. In Section 2, we find some several sufficient conditions on functions to be in the class $\mathcal{P}(\alpha, \beta)$ by using the equivalent condition given in Lemma 1.1 and the methods used in [4]. We inform that some of them are generalizations of the results given in [10]. And, in Section 3, we deal with the Briot-Bouquet differential subordinations associated with the vertical strip domain. The bounds η_{*} and η^{*} are obtained by applying this result.

To investigate the results in this paper, we need the following lemma.

Lemma 1.2. [7, p. 24] Let q be analytic and injective on $\overline{\mathbb{D}} \backslash \mathbf{E}(q)$, where

$$
\mathbf{E}(q):=\left\{\zeta \in \partial \mathbb{D}: \lim _{z \rightarrow \zeta} q(z)=\infty\right\}
$$

and $q^{\prime}(\zeta) \neq 0$ for $\zeta \in \partial \mathbb{D} \backslash \mathbf{E}(q)$. And let

$$
p(z)=a+a_{n} z^{n}+\cdots \quad(n \geq 1)
$$

be an analytic function in \mathbb{D} with $p(0)=a$. If p is not subordinate to q, then there exist points $z_{0} \in \mathbb{D}$ and $\zeta_{0} \in \partial \mathbb{D} \backslash \mathbf{E}(q)$ for which
(i) $p\left(z_{0}\right)=q\left(\zeta_{0}\right)$ and
(ii) $z_{0} p^{\prime}\left(z_{0}\right)=m \zeta_{0} q^{\prime}\left(\zeta_{0}\right)$ for some m with $m \geq n \geq 1$.

2. Some sufficient conditions to be in $\mathcal{P}(\alpha, \beta)$

Theorem 2.1. Let α and β be real numbers such that $\alpha<1<\beta$ and $\alpha+\beta \geq 2$. Let $P: \mathbb{D} \rightarrow \mathbb{C}$ be a function such that $\mathfrak{R}\{P(z)\} \geq 0$ for all $z \in \mathbb{D}$. If p is an analytic function in \mathbb{D} with $p(0)=1$ and

$$
\begin{align*}
\alpha-\frac{\beta-\alpha}{\pi} \frac{1+\sin \varphi}{\cos \varphi} \Re\{P(z)\} & <\mathfrak{R}\left\{p(z)+P(z) z p^{\prime}(z)\right\} \tag{6}\\
& <\beta+\frac{\beta-\alpha}{\pi} \frac{1-\sin \varphi}{\cos \varphi} \Re\{P(z)\}, \quad z \in \mathbb{D}
\end{align*}
$$

where φ is given by (3). Then $p \in \mathcal{P}(\alpha, \beta)$.
Proof. Let us consider a function $q: \mathbb{D} \rightarrow \mathbb{C}^{*}:=\mathbb{C} \backslash\{0\}$ defined by (2). Then we have

$$
\begin{equation*}
z q^{\prime}(z)=\frac{\pi \mathrm{i}}{\beta-\alpha} z p^{\prime}(z) q(z), \quad z \in \mathbb{D} \tag{7}
\end{equation*}
$$

Let us define a function $k: \mathbb{D} \rightarrow \mathbb{C}$ by

$$
\begin{equation*}
k(z)=\frac{\mathrm{e}^{\mathrm{i} \varphi}+\overline{\mathrm{e}^{\mathrm{i} \varphi}} z}{1-z} \tag{8}
\end{equation*}
$$

We see that q and k are analytic in \mathbb{D} with

$$
q(0)=1, \quad k(0)=\mathrm{e}^{\mathrm{i} \varphi} \quad \text { and } \quad k(\mathbb{D})=\{w: \mathfrak{R}(w)>0\} .
$$

Now we suppose that $\mathrm{e}^{\mathrm{i} \varphi} q$ is not subordinate to k. Then by Lemma 1.2, there exist points $z_{0} \in \mathbb{D}$ and $\zeta_{0} \in \partial \mathbb{D} \backslash\{1\}$ such that

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \varphi} q\left(z_{0}\right)=k\left(\zeta_{0}\right)=\mathrm{i} \rho, \quad \rho \in \mathbb{R} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{e}^{\mathrm{i} \varphi} z_{0} q^{\prime}\left(z_{0}\right)=m \zeta_{0} k^{\prime}\left(\zeta_{0}\right), \quad m \geq 1 \tag{10}
\end{equation*}
$$

Indeed we have $\rho \in \mathbb{R} \backslash\{0\}$ since the function q cannot vanish in \mathbb{D}. Also we note that

$$
\zeta_{0}=k^{-1}\left(\mathrm{e}^{\mathrm{i} \varphi} q\left(z_{0}\right)\right)=\frac{\mathrm{e}^{\mathrm{i} \varphi} q\left(z_{0}\right)-\mathrm{e}^{\mathrm{i} \varphi}}{\mathrm{e}^{\mathrm{i} \varphi} q\left(z_{0}\right)+\overline{\mathrm{e}^{\mathrm{i} \varphi}}}
$$

and

$$
\begin{equation*}
\zeta_{0} k^{\prime}\left(\zeta_{0}\right)=-\frac{\rho^{2}-2 \rho \sin \varphi+1}{2 \cos \varphi}=: \sigma . \tag{11}
\end{equation*}
$$

From (7), (9) and (10), we have

$$
\begin{equation*}
p\left(z_{0}\right)=1+\frac{\beta-\alpha}{\pi}(-\varphi+\arg (\mathrm{i} \rho))-\frac{\beta-\alpha}{\pi} \mathrm{i} \log |\rho| \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
z_{0} p^{\prime}\left(z_{0}\right)=-\frac{\beta-\alpha}{\pi \rho} m \sigma \tag{13}
\end{equation*}
$$

Here note that $\mathfrak{R}\left\{p\left(z_{0}\right)\right\}=\beta$ when $\rho>0$ and $\mathfrak{R}\left\{p\left(z_{0}\right)\right\}=\alpha$ when $\rho<0$. For the case $\rho>0$, we get

$$
\begin{aligned}
& \Re\left\{p\left(z_{0}\right)+P\left(z_{0}\right) z_{0} p^{\prime}\left(z_{0}\right)\right\} \\
& =\beta+m \frac{\beta-\alpha}{2 \pi \cos \varphi} \frac{\rho^{2}-2 \rho \sin \varphi+1}{\rho} \Re\left\{P\left(z_{0}\right)\right\} \\
& \geq \beta+\frac{\beta-\alpha}{2 \pi \cos \varphi} \frac{\rho^{2}-2 \rho \sin \varphi+1}{\rho} \Re\left\{P\left(z_{0}\right)\right\} \\
& \geq \beta+\frac{\beta-\alpha}{\pi} \frac{1-\sin \varphi}{\cos \varphi} \Re\left\{P\left(z_{0}\right)\right\} .
\end{aligned}
$$

This is a contradiction to (6). For the case $\rho<0$, we get

$$
\mathfrak{R}\left\{p\left(z_{0}\right)+P\left(z_{0}\right) z_{0} p^{\prime}\left(z_{0}\right)\right\} \leq \alpha-\frac{\beta-\alpha}{\pi} \frac{1+\sin \varphi}{\cos \varphi} \mathfrak{R}\left\{P\left(z_{0}\right)\right\}
$$

This also contradicts to (6). Therefore we obtain

$$
\mathfrak{R}\left\{\mathrm{e}^{\mathrm{i} \varphi} q(z)\right\}>0, \quad z \in \mathbb{D}
$$

and by Lemma 1.1, we have $p \in \mathcal{P}(\alpha, \beta)$.
Remark 2.2. If we put $P(z) \equiv 1$ in Theorem 2.1, we can obtain the result in [10, Theorem 2.2].

Theorem 2.3. Let α, β be real numbers such that $\alpha<1<\beta$ and $\alpha+\beta \geq 2$. If p is an analytic function in \mathbb{D} with $p(0)=1$ and

$$
\begin{align*}
-\frac{\beta-\alpha}{2 \pi \cos \varphi}(\Psi(z)+2 \sin \varphi) & <\mathfrak{R}\left\{z p^{\prime}(z)\right\} \tag{14}\\
& <\frac{\beta-\alpha}{2 \pi \cos \varphi}(\Psi(z)-2 \sin \varphi), \quad z \in \mathbb{D}
\end{align*}
$$

where

$$
\Psi(z)=\exp \left[\frac{\pi}{\beta-\alpha} \mathfrak{I}\{p(z)\}\right]+\exp \left[-\frac{\pi}{\beta-\alpha} \Im\{p(z)\}\right]
$$

and φ is given by (3). Then $p \in \mathcal{P}(\alpha, \beta)$.
Proof. Suppose that $\mathrm{e}^{\mathrm{i} \varphi} q$ is not subordinate to k, where q and k are defined by (2) and (8), respectively. Then, as the proof of Theorem 2.1, there exists a $z_{0} \in \mathbb{D}$ for which satisfies (12) and (13) with $\rho \in \mathbb{R} \backslash\{0\}$ and σ given by (11).

For the case $\rho>0$, from (12), we have

$$
\rho=\exp \left[-\frac{\pi}{\beta-\alpha} \Im\left\{p\left(z_{0}\right)\right\}\right] .
$$

So we have

$$
\begin{aligned}
\Re\left\{z_{0} p^{\prime}\left(z_{0}\right)\right\} & \geq \frac{\beta-\alpha}{2 \pi \cos \varphi}\left(\rho+\frac{1}{\rho}-2 \sin \varphi\right) \\
& =\frac{\beta-\alpha}{2 \pi \cos \varphi}\left(\Psi\left(z_{0}\right)-2 \sin \varphi\right),
\end{aligned}
$$

which is a contradiction to (14). For the case $\rho<0$, we have

$$
\rho=-\exp \left[-\frac{\pi}{\beta-\alpha} \Im\left\{p\left(z_{0}\right)\right\}\right] .
$$

And this leads us to get

$$
\begin{aligned}
\mathfrak{R}\left\{z_{0} p^{\prime}\left(z_{0}\right)\right\} & \leq \frac{\beta-\alpha}{2 \pi \cos \varphi}\left(\rho+\frac{1}{\rho}-2 \sin \varphi\right) \\
& =-\frac{\beta-\alpha}{2 \pi \cos \varphi}\left(\Psi\left(z_{0}\right)+2 \sin \varphi\right)
\end{aligned}
$$

which is a contradiction to (14). Hence $\mathrm{e}^{\mathrm{i} \varphi} q$ is subordinate to k in \mathbb{D} and Lemma 1.1 yields that the function p belongs to the class $\mathcal{P}(\alpha, \beta)$.

Theorem 2.4. Let α, β be real numbers such that $\alpha<1<\beta$, $\alpha+\beta \geq 2$ and $2 \alpha+\beta<3$. And let $c \in[0,1]$ be given. If p is an analytic function in \mathbb{D} with $p(0)=1$ and

$$
\begin{align*}
& -\frac{c}{2 \cos \varphi}|\mathfrak{I}\{p(z)\}|-\frac{(\beta-\alpha)(1+2 \sin \varphi)}{2 \pi \cos \varphi} \\
& <\mathfrak{R}\left\{z p^{\prime}(z)\right\} \tag{15}\\
& <\frac{c}{2 \cos \varphi}|\mathfrak{I}\{p(z)\}|+\frac{(\beta-\alpha)(1-2 \sin \varphi)}{2 \pi \cos \varphi}, \quad z \in \mathbb{D}
\end{align*}
$$

where φ is given by (3). Then

$$
\alpha<\mathfrak{R}\{p(z)\}<\beta, \quad z \in \mathbb{D} .
$$

Proof. First of all, we note that $1+2 \sin \varphi>0$, since $2 \alpha+\beta<3$. Also, we have $1-2 \sin \varphi>0$, since $\varphi<0$. Therefore the left-side and the right-side in the inequality (15) is negative and positive, respectively, at $z=0$. This means that the inequality (15) is well-defined.

For given $c \in[0,1]$, let us define a function $g:[1, \infty) \rightarrow \mathbb{R}$ by

$$
g(x)=x^{2}-c x \log x-x+1
$$

Differentiating the function g, we have

$$
g^{\prime}(x)=2 x-c \log x-c-1 \quad \text { and } \quad g^{\prime \prime}(x)=2-\frac{c}{x}
$$

Since $g^{\prime}(1)=1-c \geq 0$ and $g^{\prime \prime}(x)>0$ on $[1, \infty), g^{\prime}(x) \geq 0$ on there. This with $g(1)>0$ leads us to $g(x) \geq 0$ on $[1, \infty)$. Thus we have

$$
x+\frac{1}{x} \geq c \log x+1, \quad x \in[1, \infty)
$$

Also, we have

$$
x+\frac{1}{x} \geq-c \log x+1, \quad x \in(0,1]
$$

Therefore we obtain

$$
\begin{equation*}
x+\frac{1}{x} \geq c|\log x|+1, \quad x \in \mathbb{R}_{+}:=\{x \in \mathbb{R}: x>0\} \tag{16}
\end{equation*}
$$

Now, suppose that $\mathrm{e}^{\mathrm{i} \varphi} q$ is not subordinate to k, where q and k are defined by (2) and (8), respectively. Then there exists a $z_{0} \in \mathbb{D}$ for which satisfies (12) and (13) with $\rho \in \mathbb{R} \backslash\{0\}$ and σ given by (11).

For the case $\rho>0$, using the inequality (16), we have

$$
\begin{aligned}
\mathfrak{R}\left\{z_{0} p^{\prime}\left(z_{0}\right)\right\} & =m \frac{\beta-\alpha}{2 \pi \cos \varphi} \frac{\rho^{2}-2 \rho \sin \varphi+1}{\rho} \\
& \geq \frac{\beta-\alpha}{2 \pi \cos \varphi}\left(\rho+\frac{1}{\rho}-2 \sin \varphi\right) \\
& \geq \frac{\beta-\alpha}{2 \pi \cos \varphi}(c|\log \rho|+1-2 \sin \varphi) \\
& =\frac{\beta-\alpha}{2 \pi \cos \varphi}\left(\frac{c \pi}{\beta-\alpha}\left|\mathfrak{I}\left\{p\left(z_{0}\right)\right\}\right|+1-2 \sin \varphi\right),
\end{aligned}
$$

which is a contradiction to (15). Similar calculations leads us to get

$$
\mathfrak{R}\left\{z_{0} p^{\prime}\left(z_{0}\right)\right\} \leq-\frac{\beta-\alpha}{2 \pi \cos \varphi}\left(\frac{c \pi}{\beta-\alpha}\left|\Im\left\{p\left(z_{0}\right)\right\}\right|+1+2 \sin \varphi\right),
$$

when $\rho<0$. This is also a contradiction to (15). Therefore we obtain $\mathrm{e}^{\mathrm{i} \varphi} q \prec k$ in \mathbb{D} and $p \in \mathcal{P}(\alpha, \beta)$.

Theorem 2.5. Let α, β be real numbers such that $\alpha<1<\beta$ and $\alpha+\beta \geq 2$. If p is an analytic function in \mathbb{D} with $p(0)=1, p^{\prime}(z) \neq 0$ in D and

$$
\begin{equation*}
-\frac{(\beta-\alpha)(1+\sin \varphi)}{\alpha \pi \cos \varphi}<\left[\mathfrak{R}\left\{\frac{p(z)}{z p^{\prime}(z)}\right\}\right]^{-1}<\frac{(\beta-\alpha)(1-\sin \varphi)}{\beta \pi \cos \varphi}, \quad z \in \mathbb{D}, \tag{17}
\end{equation*}
$$

where φ is given by (3). Then

$$
\alpha<\mathfrak{R}\{p(z)\}<\beta, \quad z \in \mathbb{D} .
$$

Proof. Suppose that $\mathrm{e}^{\mathrm{i} \varphi} q$ is not subordinate to k, where q and k are defined by (2) and (8), respectively. Then, as the proof of Theorem 2.1, there exists a $z_{0} \in \mathbb{D}$ for which satisfies (12) and (13) with $\rho \in \mathbb{R} \backslash\{0\}$ and σ given by (11).

For the case $\rho>0$, we have

$$
\begin{equation*}
\mathfrak{R}\left\{\frac{p\left(z_{0}\right)}{z_{0} p^{\prime}\left(z_{0}\right)}\right\}=\frac{\mathfrak{R}\left\{p\left(z_{0}\right)\right\}}{z_{0} p^{\prime}\left(z_{0}\right)}=\frac{2 \beta \pi \rho \cos \varphi}{m(\beta-\alpha)\left(\rho^{2}-2 \rho \sin \varphi+1\right)} . \tag{18}
\end{equation*}
$$

Applying the inequalities $m \geq 1$ and $\left(\rho^{2}-2 \rho \sin \varphi+1\right) / \rho \geq 2(1-\sin \varphi)$ to the equation (18), we obtain

$$
\mathfrak{R}\left\{\frac{p\left(z_{0}\right)}{z_{0} p^{\prime}\left(z_{0}\right)}\right\} \leq \frac{\beta \pi \cos \varphi}{(\beta-\alpha)(1-\sin \varphi)},
$$

which is a contradiction to (17). For the case $\rho<0$, similar calculations leads us to get

$$
\mathfrak{R}\left\{\frac{p\left(z_{0}\right)}{z_{0} p^{\prime}\left(z_{0}\right)}\right\} \geq-\frac{\alpha \pi \cos \varphi}{(\beta-\alpha)(1+\sin \varphi)}
$$

which is a contradiction to (17). And this completes the proof of Theorem 2.5.
3. The Briot-Bouquet differential subordinations associated with the class $\mathcal{P}(\alpha, \beta)$

Theorem 3.1. Let α, β, μ and ν be real numbers such that $\alpha<$ $1<\beta, \mu \geq 0$ and $\mu \alpha+\nu>0$. Let p be an analytic function in \mathbb{D} with $p(0)=1$. Let γ and δ be real constants such that

$$
\begin{equation*}
\gamma=\min _{\rho>0} \frac{\rho^{2}+2 \rho \sin \varphi+1}{\rho\left((\mu \alpha+\nu)^{2}+\left(\frac{(\beta-\alpha) \mu}{\pi}\right)^{2}(\log \rho)^{2}\right)} \tag{19}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta=\min _{\rho>0} \frac{\rho^{2}-2 \rho \sin \varphi+1}{\rho\left((\mu \beta+\nu)^{2}+\left(\frac{(\beta-\alpha) \mu}{\pi}\right)^{2}(\log \rho)^{2}\right)}, \tag{20}
\end{equation*}
$$

where φ is given by (3). If

$$
\begin{aligned}
\alpha-\frac{\gamma(\beta-\alpha)(\mu \alpha+\nu)}{2 \pi \cos \varphi} & <\mathfrak{R}\left\{p(z)+\frac{z p^{\prime}(z)}{\mu p(z)+\nu}\right\} \\
& <\beta+\frac{\delta(\beta-\alpha)(\mu \beta+\nu)}{2 \pi \cos \varphi}, \quad z \in \mathbb{D}
\end{aligned}
$$

then $p \in \mathcal{P}(\alpha, \beta)$.
Proof. First of all, we show the existence of values γ and δ. For these, let us define two functions l_{1} and $l_{2}:(0, \infty) \rightarrow \mathbb{R}$ by

$$
l_{1}(\rho)=\frac{\rho^{2}+2 \rho \sin \varphi+1}{\rho\left((\mu \alpha+\nu)^{2}+\left(\frac{(\beta-\alpha) \mu}{\pi}\right)^{2}(\log \rho)^{2}\right)}
$$

and

$$
l_{2}(\rho)=\min _{\rho>0} \frac{\rho^{2}-2 \rho \sin \varphi+1}{\rho\left((\mu \beta+\nu)^{2}+\left(\frac{(\beta-\alpha) \mu}{\pi}\right)^{2}(\log \rho)^{2}\right)}
$$

respectively. Since $\left(\rho^{2}+2 \rho \sin \varphi+1\right) / \rho \geq 2(1+\sin \varphi)$ for all $\rho>0$, we have $l_{1}(\rho)>0$ for all $\rho>0$. Applying L'Hospital's rule twice, we get

$$
\begin{equation*}
\lim _{\rho \rightarrow \infty} l_{1}(\rho)=\frac{\pi^{2}}{(\beta-\alpha)^{2} \mu^{2}} \lim _{\rho \rightarrow \infty} \frac{\rho}{1+\log \rho}=\infty \tag{21}
\end{equation*}
$$

And from the equation

$$
\begin{aligned}
& \rho\left\{(\mu \alpha+\nu)^{2}+\left(\frac{(\beta-\alpha) \mu}{\pi}\right)^{2}(\log \rho)^{2}\right\} \\
& =-2\left(\frac{(\beta-\alpha) \mu}{\pi}\right)^{2}(\rho \log \rho) \rightarrow 0^{+}, \quad \text { as } \rho \rightarrow 0^{+}
\end{aligned}
$$

we have

$$
\begin{equation*}
\lim _{\rho \rightarrow 0^{+}} l_{1}(\rho)=\infty \tag{22}
\end{equation*}
$$

Since the function l_{1} is continuous on $(0, \infty)$, it follows from (21) and (22) that the constant $\gamma=\min _{\rho>0} l_{1}(\rho)$ exists. Similarly, the function l_{2} also has a minimum δ on $(0, \infty)$.

Now, suppose that $\mathrm{e}^{\mathrm{i} \varphi} q$ is not subordinate to k, where q and k are defined by (2) and (8), respectively. Then, as the proof of Theorem 2.1, there exists a $z_{0} \in \mathbb{D}$ for which satisfies (12) and (13) with $\rho \in \mathbb{R} \backslash\{0\}$ and σ given by (11).

For the case $\rho>0$, we have

$$
\begin{aligned}
\Re\left\{p\left(z_{0}\right)+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{\mu p\left(z_{0}\right)+\nu}\right\} & =\beta+m \frac{(\beta-\alpha)(\mu \beta+\nu)}{2 \pi \cos \varphi} l_{2}(\rho) \\
& \geq \beta+\frac{\delta(\beta-\alpha)(\mu \beta+\nu)}{2 \pi \cos \varphi}
\end{aligned}
$$

which is a contradiction to the hypothesis. For the case $\rho<0$, put $\tilde{\rho}=-\rho>0$. Then,

$$
\begin{aligned}
\mathfrak{R}\left\{p\left(z_{0}\right)+\frac{z_{0} p^{\prime}\left(z_{0}\right)}{\mu p\left(z_{0}\right)+\nu}\right\} & =\alpha-m \frac{(\beta-\alpha)(\mu \alpha+\nu)}{2 \pi \cos \varphi} l_{1}(\tilde{\rho}) \\
& \leq \alpha-\frac{\gamma(\beta-\alpha)(\mu \alpha+\nu)}{2 \pi \cos \varphi}
\end{aligned}
$$

which is a contradiction to the hypothesis and this completes the proof of Theorem 3.1.

Remark 3.2. If we put $\mu=1$ and $\nu=0$ in Theorem 3.1, we can obtain the result in [10, Theorem 2.4].

Corollary 3.3. Let α, β, μ and ν be real numbers such that $\alpha<$ $1<\beta, \mu \geq 0$ and $\mu \alpha+\nu>0$. And let γ and δ be real constants given by (19) and (20), respectively. If $f \in \mathcal{S}^{*}(A, B)$, where

$$
A=\alpha-\frac{\gamma(\beta-\alpha)(\mu \alpha+\nu)}{2 \pi \cos \varphi} \quad \text { and } \quad B=\beta+\frac{\delta(\beta-\alpha)(\mu \beta+\nu)}{2 \pi \cos \varphi}
$$

with φ given by (3), then the function $I_{\mu, \nu}[f]$ given by (5) is in the class $\mathcal{S}^{*}(\alpha, \beta)$. That is, $\eta_{*} \leq A$ and $\eta^{*} \geq B$.

References

[1] A. A. Attiya and T. Bulboacă, A general theorem associated with the BriotBouquet differential subordination, J. Comput. Anal. Appl. 16(1) (2014), 722730.
[2] S. D. Bernardi, Convex and starlike univalent functions, Trans. Amer. Math. Soc. 135 (1969), 429-446.
[3] P. Eenigenburg, P. T. Mocanu, S. S. Miller and M. O. Reade, On a BriotBouquet differential subordination, General Inequalities 3, International Series of Numerical Mathematics 64 (1983), 339-348.
[4] I. H. Kim and N. E. Cho, Sufficient conditions for Carathéodory functions, Computers and Mathematics with Applications 59 (2010), 2067-2073.
[5] K. Kuroki and S. Owa, Notes on new class for certain analytic functions, Adv. Math. Sci. J. 1(2) (2012), 127-131.
[6] A. Marx, Untersuchungen über schlichte Abildung, Math. Ann. 107 (1932/33), 40-67.
[7] S. S. Miller and P. T. Mocanu, Differential Subordination, Theory and Application, Marcel Dekker, Inc., New York, Bassel, 2000.
[8] S. S. Miller and P. T. Mocanu, Univalent solutions of Briot-Bouquet differential equations, J. Differential Equations 56 (1985), 297-309.
[9] Ch. Pommerenke, Univalent functions, Vandenhoeck und Ruprecht, 1975.
[10] Y. J. Sim and O. S. Kwon, Some results on analytic functions associated with vertical strip domain, Proc. Jangjeon Math. Soc. 19(4) (2016), 653-661.
[11] E. Strohhäcker, Beiträge zur Theorie der schlichten Funktionen, Math. Z. 37 (1933), 356-380.

Young Jae Sim
Department of Mathematics, Kyungsung University, 309, Suyeong-ro, Nam-gu, Busan, Korea.
E-mail: yjsim@ks.ac.kr

Oh Sang Kwon
Department of Mathematics, Kyungsung University,

309, Suyeong-ro, Nam-gu, Busan, Korea.
E-mail: oskwon@ks.ac.kr

[^0]: Received February 13, 2017. Accepted October 25, 2017.
 2010 Mathematics Subject Classification. 30C20, 30C45, 30C80
 Key words and phrases. starlike functions, vertical strip domain, integral operator, Briot-Bouquet differential subordination.

 This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIP; Ministry of Science, ICT \& Future Planning) (No. NRF-2017R1C1B5076778)
 *Corresponding author

