SOME RELATIONS BETWEEN $\zeta(2 n+1)$ AND $\zeta(2 n+1, \alpha)$ FOR SPECIAL VALUES OF α

Sung-Geun Lim

Abstract

Hurwitz zeta function occurs in various parts of mathematics. In particular, it plays an important role in some area of number theory. In this paper, using a certain transformation formula, we find some identities of relations between $\zeta(2 n+1)$ and $\zeta(2 n+1, \alpha)$ for special values of α.

1. Introduction and preliminaries

The Hurwitz zeta function is defined for complex s with $\operatorname{Re}(s)>1$ and α with $\operatorname{Re}(\alpha)>0$ by

$$
\zeta(s, \alpha)=\sum_{n=0}^{\infty} \frac{1}{(n+\alpha)^{s}} .
$$

Let $\zeta(s)$ be the Riemann zeta function. For $\alpha=\frac{1}{2}$, it is easy to see that

$$
\zeta\left(s, \frac{1}{2}\right)=\left(2^{s}-1\right) \zeta(s)
$$

which gives a relation between $\zeta(s)$ and $\zeta\left(s, \frac{1}{2}\right)$. In this paper, we find this kind of relations between $\zeta(2 n+1)$ and $\zeta(2 n+1, \alpha)$ for special values of α and positive integer n.
Let N be a positive integer and let $\mathbb{H}=\{\tau \in \mathbb{C} \mid \operatorname{Im}(\tau)>0\}$. For every $\tau \in \mathbb{H}$,

$$
V \tau=V(\tau)=\frac{a \tau+b}{c \tau+d}
$$

denotes a modular transformation with $c>0$ and $c \equiv 0(\bmod N)$. Let $r=\left(r_{1}, r_{2}\right)$ and $h=\left(h_{1}, h_{2}\right)$ denote real vectors, and define the
associated vectors R and H by

$$
R=\left(R_{1}, R_{2}\right)=\left(a r_{1}+c r_{2}, b r_{1}+d r_{2}\right)
$$

and

$$
H=\left(H_{1}, H_{2}\right)=\left(d h_{1}-b h_{2},-c h_{1}+a h_{2}\right) .
$$

For a complex number w, let $e(w)=e^{2 \pi i w}$ and let the branch of the argument be defined by $-\pi \leq \arg w<\pi$. For $\tau \in \mathbb{H}$ and any complex number s, define
$A_{N}(\tau, s ; r, h)=\sum_{N m+r_{1}>0} \sum_{n-h_{2}>0} \frac{e\left(N m h_{1}+\left(\left(N m+r_{1}\right) \tau+r_{2}\right)\left(n-h_{2}\right)\right)}{\left(n-h_{2}\right)^{1-s}}$
and

$$
H_{N}(\tau, s ; r, h)=A_{N}(\tau, s ; r, h)+e\left(\frac{s}{2}\right) A_{N}(\tau, s ;-r,-h) .
$$

For real x, β and complex s with $\operatorname{Re}(s)>1$, let

$$
\psi(x, \beta, s):=\sum_{n+\beta>0} \frac{e(n x)}{(n+\beta)^{s}} .
$$

Let λ_{N} denote the characteristic function of the integers modulo N. For a real number $x,[x]$ denotes the greatest integer less than or equal to x and $\{x\}:=x-[x]$. Then the modular transformation formula for $H_{N}(\tau, s ; r, h)$ is given by the following theorem which plays a principal role to obtain our results.

Theorem 1.1. ([2]) Let $Q=\left\{\tau \in \mathbb{C} \left\lvert\, \operatorname{Re}(\tau)>-\frac{d}{c}\right.\right\}$ and $\varrho_{N}=c\left\{R_{2}\right\}-$ $N d\left\{R_{1} / N\right\}, c=c^{\prime} N$. Then for $\tau \in Q$ and all s,

$$
\begin{aligned}
& (c \tau+d)^{-s} H_{N}(V \tau, s ; r, h) \\
& =H_{N}(\tau, s ; R, H) \\
& \quad-\lambda_{N}\left(r_{1}\right) \frac{e\left(-r_{1} h_{1}\right) \Gamma(s)}{(-2 \pi i)^{s}(c \tau+d)^{s}}\left(\psi\left(h_{2}, r_{2}, s\right)+e\left(\frac{s}{2}\right) \psi\left(-h_{2},-r_{2}, s\right)\right) \\
& +\lambda_{N}\left(R_{1}\right) \frac{e\left(-R_{1} H_{1}\right) \Gamma(s)}{(-2 \pi i)^{s}}\left(\psi\left(H_{2}, R_{2}, s\right)+e\left(-\frac{s}{2}\right) \psi\left(-H_{2},-R_{2}, s\right)\right) \\
& +(2 \pi i)^{-s} L_{N}(\tau, s ; R, H),
\end{aligned}
$$

where

$$
\begin{aligned}
& L_{N}(\tau, s ; R, H) \\
& =\sum_{j=1}^{c^{\prime}} e\left(-H_{1}\left(N j+N\left[R_{1} / N\right]-c\right)-H_{2}\left(\left[R_{2}\right]+1+\left[\left(N j d+\varrho_{N}\right) / c\right]-d\right)\right) \\
& \quad \cdot \int_{C} u^{s-1} \frac{e^{-(c \tau+d)\left(N j-N\left\{R_{1} / N\right\}\right) u / c}}{e^{-(c \tau+d) u}-e\left(c H_{1}+d H_{2}\right)} \frac{e^{\left\{\left(N j d+\varrho_{N}\right) / c\right\} u}}{e^{u}-e\left(-H_{2}\right)} d u,
\end{aligned}
$$

where C is a loop beginning at $+\infty$, proceeding in the upper half-plane, encircling the origin in the positive direction so that $u=0$ is the only zero of

$$
\left(e^{-(c \tau+d) u}-e\left(c H_{1}+d H_{2}\right)\right)\left(e^{u}-e\left(-H_{2}\right)\right)
$$

lying inside the loop, and then returning to $+\infty$ in the lower half plane. Here, we choose the branch of u^{s} with $0<\arg u<2 \pi$.

In fact, Theorem 1.1 is another version of Theorem 2.1 in [1]. If $N=1$ in Theorem 1.1, then we have Theorem 2.1 in [1]. Also, if $r^{\prime}=\left(\frac{r_{1}}{N}, r_{2}\right)$ and $h^{\prime}=\left(N h_{1}, h_{2}\right)$, then we see that $H_{N}(\tau, s ; r, h)=H\left(N \tau, s ; r^{\prime}, h^{\prime}\right)$.

2. Main results

Let $B_{n}(x), n \geq 0$ be the Bernoulli polynomials which come from the generating function

$$
\frac{t e^{x t}}{e^{t}-1}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}(|t|<2 \pi)
$$

The n-th Bernoulli number $B_{n}, n \geq 0$, is defined by $B_{n}=B_{n}(0)$. Put $\bar{B}_{n}(x)=B_{n}(\{x\}), n \geq 0$. Let $N=1, r=\left(r_{1}, r_{2}\right), h=(0,0), V \tau=$ $1-\frac{1}{\tau}$ and $s=-2 n$, where $n, r_{1} \in \mathbb{Z}, r_{2} \notin \mathbb{Z}$. By Theorem 1.1, we see that

$$
\begin{aligned}
\tau^{2 n} H_{1}(V \tau,-2 n ; r, 0) & =H_{1}(\tau,-2 n ; R, 0)+(2 \pi i)^{2 n} L_{1}(\tau,-2 n ; R, 0) \\
& -\lim _{s \rightarrow-2 n} \frac{\Gamma(s)}{(-2 \pi i \tau)^{s}}\left(\psi\left(0, r_{2}, s\right)+e\left(\frac{s}{2}\right) \psi\left(0,-r_{2}, s\right)\right)
\end{aligned}
$$

It is easy to see that

$$
\begin{aligned}
H_{1}(V \tau,-2 n ; r, 0) & =\sum_{m=0}^{\infty} \sum_{k=1}^{\infty} \frac{e\left(\left((m+1) V \tau+r_{2}\right) k\right)+e\left(\left((m+1) V \tau-r_{2}\right) k\right)}{k^{2 n+1}} \\
& =\sum_{k=1}^{\infty} \frac{\cosh \left(2 \pi i k r_{2}\right)}{k^{2 n+1} \sinh (\pi i k / \tau)} e^{-\pi i k / \tau} \\
& =\sum_{k=1}^{\infty} \frac{2 \cos \left(2 \pi r_{2} k\right)}{k^{2 n+1}\left(e^{2 \pi i k / \tau}-1\right)}
\end{aligned}
$$

and

$$
H_{1}(\tau,-2 n ; R, 0)=\sum_{m=0}^{\infty} \sum_{k=1}^{\infty} \frac{e\left(\left(\left(m+\left\{r_{2}\right\}\right) \tau-r_{2}\right) k\right)+e\left(\left(\left(m-\left\{r_{2}\right\}\right) \tau+r_{2}\right) k\right)}{k^{2 n+1}}
$$

$$
=\sum_{k=1}^{\infty} \frac{\cosh \left(\pi i k\left(-2 r_{1}+\left(2\left\{r_{2}\right\}-1\right) \tau\right)\right)}{k^{2 n+1} \sinh (-\pi i k \tau)} .
$$

Next, using the residue theorem, we have

$$
\begin{aligned}
L_{1}(\tau,-2 n ; R, 0) & =\int_{C} u^{-2 n-1} \frac{e^{-\tau\left(1-\left\{r_{2}\right\}\right) u}}{e^{-\tau u}-1} \frac{1}{e^{u}-1} d u \\
& =(-\tau)^{-1} \int_{C} u^{-2 n-3} \sum_{\ell=0}^{\infty} \frac{B_{\ell}\left(1-\left\{r_{2}\right\}\right)}{\ell!}(-\tau u)^{\ell} \sum_{m=0}^{\infty} \frac{B_{m}}{m!} u^{m} d u \\
& =-2 \pi i \sum_{k=0}^{2 n+2} \frac{\bar{B}_{k}\left(r_{2}\right) B_{2 n+2-k}}{k!(2 n+2-k)!} \tau^{k-1} .
\end{aligned}
$$

For $\operatorname{Re}(s)<0$, applying the formula in [3], p. 37, we obtain that

$$
\begin{aligned}
& \frac{\Gamma(s)}{(-2 \pi i \tau)^{s}}\left(\psi\left(0, r_{2}, s\right)+e\left(\frac{s}{2}\right) \psi\left(0,-r_{2}, s\right)\right) \\
& =\frac{\Gamma(s)}{(-2 \pi i \tau)^{s}}\left(\sum_{m+r_{2}>0} \frac{1}{\left(m+r_{2}\right)^{s}}+e\left(\frac{s}{2}\right) \sum_{m-r_{2}>0} \frac{1}{\left(m-r_{2}\right)^{s}}\right) \\
& =\frac{\Gamma(s)}{(-2 \pi i \tau)^{s}}\left(\zeta\left(s,\left\{r_{2}\right\}\right)+e^{\pi i s} \zeta\left(s, 1-\left\{r_{2}\right\}\right)\right) \\
& =\frac{(-i \tau)^{-s}}{\sin (\pi s)}\left(\sum_{k=1}^{\infty} \frac{\sin \left(2 k \pi\left\{r_{2}\right\}+\pi s / 2\right)}{k^{1-s}}+e^{\pi i s} \sum_{k=1}^{\infty} \frac{\sin \left(-2 k \pi\left\{r_{2}\right\}+\pi s / 2\right)}{k^{1-s}}\right) \\
& =\frac{(-i \tau)^{-s}}{\sin (\pi s)} \sum_{k=0}^{\infty} \frac{e^{-2 k \pi i\left\{r_{2}\right\}}\left(e^{3 \pi i s / 2}-e^{-2 \pi i s / 2}\right)}{k^{1-s}} \\
& =\tau^{-s} \sum_{k=0}^{\infty} \frac{e^{-2 k \pi i\left\{r_{2}\right\}}}{k^{1-s}} .
\end{aligned}
$$

Hence it follows that, for $n>0$,

$$
\begin{aligned}
& \lim _{s \rightarrow-2 n} \frac{\Gamma(s)}{(-2 \pi i \tau)^{s}}\left(\psi\left(0, r_{2}, s\right)+e\left(\frac{s}{2}\right) \psi\left(0,-r_{2}, s\right)\right) \\
& =\tau^{2 n} \psi\left(-r_{2}, 0,2 n+1\right) .
\end{aligned}
$$

Putting $\tau=i$, we now obtain that, for $n>0$,

$$
\begin{array}{r}
\sum_{k=1}^{\infty} \frac{2 \cos \left(2 \pi r_{2} k\right)}{k^{2 n+1}\left(e^{2 \pi k}-1\right)}=(-1)^{n} \sum_{k=1}^{\infty} \frac{\cosh \left(\pi k\left(2 r_{1}-2\left\{r_{2}\right\}+1\right)\right)}{k^{2 n+1} \sinh (\pi k)} \\
-(2 \pi)^{2 n+1} \sum_{k=0}^{2 n+2} \frac{\bar{B}_{k}\left(r_{2}\right) B_{2 n+2-k}}{k!(2 n+2-k)!} i^{k}-\psi\left(-r_{2}, 0,2 n+1\right) . \tag{2.1}
\end{array}
$$

Theorem 2.1. For any integer $n>0$,
$\zeta\left(2 n+1, \frac{1}{3}\right)=\frac{3^{2 n+1}-1}{2} \zeta(2 n+1)+\frac{(-1)^{n+1}(6 \pi)^{2 n+1} B_{2 n+1}(1 / 3)}{2 \sqrt{3}(2 n+1)!}$
and
$\zeta\left(2 n+1, \frac{2}{3}\right)=\frac{3^{2 n+1}-1}{2} \zeta(2 n+1)+\frac{(-1)^{n+1}(6 \pi)^{2 n+1} B_{2 n+1}(2 / 3)}{2 \sqrt{3}(2 n+1)!}$.
Proof. Let $r_{2}=\frac{1}{3}$ and see the imaginary parts in (2.1). Recalling that $B_{2 k+1}=0, k \geq 1$, we have

$$
\begin{aligned}
\operatorname{Im}\left(\sum_{k=0}^{2 n+2} \frac{\bar{B}_{k}(1 / 3) B_{2 n+2-k}}{k!(2 n+2-k)!} i^{k}\right) & =\sum_{k=0}^{n}(-1)^{k} \frac{\bar{B}_{2 k+1}(1 / 3) B_{2 n-2 k+1}}{(2 k+1)!(2 n-2 k+1)!} \\
& =\frac{(-1)^{n}(2 \pi)^{2 n+1} B_{2 n+1}(1 / 3)}{2(2 n+1)!}
\end{aligned}
$$

Since

$$
\begin{aligned}
\psi\left(-\frac{1}{3}, 0,2 n+1\right) & =\sum_{k=1}^{\infty} \frac{e^{-2 k \pi i / 3}}{k^{2 n+1}} \\
& =\sum_{k=1}^{\infty} \frac{\cos (2 k \pi / 3)}{k^{2 n+1}}-i \sum_{k=1}^{\infty} \frac{\sin (2 k \pi / 3)}{k^{2 n+1}}
\end{aligned}
$$

we see that

$$
\begin{aligned}
\operatorname{Im}\left(\psi\left(-\frac{1}{3}, 0,2 n+1\right)\right) & =-\sum_{k=1}^{\infty} \frac{\sin (2 k \pi / 3)}{k^{2 n+1}} \\
& =-\frac{\sqrt{3}}{2} \sum_{k=0}^{\infty} \frac{1}{(3 k+1)^{2 n+1}}+\frac{\sqrt{3}}{2} \sum_{k=0}^{\infty} \frac{1}{(3 k+2)^{2 n+1}} \\
& =-\frac{\sqrt{3}}{2} \cdot 3^{-2 n-1}\left(\zeta\left(2 n+1, \frac{1}{3}\right)-\zeta\left(2 n+1, \frac{2}{3}\right)\right)
\end{aligned}
$$

Thus, equating the imaginary parts in (2.1), we obtain that

$$
\left(2 \zeta\left(2 n+1, \frac{1}{3}\right)-\zeta\left(2 n+1, \frac{2}{3}\right)=\frac{(-1)^{n+1}(6 \pi)^{2 n+1} B_{2 n+1}(1 / 3)}{\sqrt{3}(2 n+1)!}\right.
$$

An elementary calculation shows that
(2.3) $\zeta\left(2 n+1, \frac{1}{3}\right)+\zeta\left(2 n+1, \frac{2}{3}\right)=\left(3^{2 n+1}-1\right) \zeta(2 n+1)$.

Adding and subtracting (2.2) and (2.3), we complete the proof of the theorem.

Theorem 2.2. For any integer $n>0$,
$\zeta\left(2 n+1, \frac{1}{4}\right)=2^{2 n}\left(2^{2 n+1}-1\right) \zeta(2 n+1)+\frac{(-1)^{n+1} 2^{6 n+1} \pi^{2 n+1} B_{2 n+1}(1 / 4)}{(2 n+1)!}$
and
$\zeta\left(2 n+1, \frac{3}{4}\right)=2^{2 n}\left(2^{2 n+1}-1\right) \zeta(2 n+1)+\frac{(-1)^{n+1} 2^{6 n+1} \pi^{2 n+1} B_{2 n+1}(3 / 4)}{(2 n+1)!}$.
Proof. Let $r_{2}=\frac{1}{4}$ and equate the imaginary parts in (2.1). By the similar way in the proof of Theorem 2.1, we have

$$
\operatorname{Im}\left(\sum_{k=0}^{2 n+2} \frac{\bar{B}_{k}(1 / 4) B_{2 n+2-k}}{k!(2 n+2-k)!} i^{k}\right)=\frac{(-1)^{n}(2 \pi)^{2 n+1} B_{2 n+1}(1 / 4)}{2(2 n+1)!}
$$

and

$$
\begin{aligned}
\operatorname{Im}\left(\psi\left(-\frac{1}{4}, 0,2 n+1\right)\right) & =-\sum_{k=1}^{\infty} \frac{\sin (k \pi / 2)}{k^{2 n+1}} \\
& =-\sum_{k=0}^{\infty} \frac{1}{(4 k+1)^{2 n+1}}+\sum_{k=0}^{\infty} \frac{1}{(4 k+3)^{2 n+1}} \\
& =-4^{-2 n-1}\left(\zeta\left(2 n+1, \frac{1}{4}\right)-\zeta\left(2 n+1, \frac{3}{4}\right)\right) .
\end{aligned}
$$

Thus we obtain that

$$
\left(2 \zeta 4\left(2 n+1, \frac{1}{4}\right)-\zeta\left(2 n+1, \frac{3}{4}\right)=\frac{(-1)^{n+1}(8 \pi)^{2 n+1} B_{2 n+1}(1 / 4)}{2(2 n+1)!} .\right.
$$

It is easy to see that

$$
\begin{align*}
& \zeta\left(2 n+1, \frac{1}{4}\right)+\zeta\left(2 n+1, \frac{3}{4}\right) \\
& =4^{2 n+1}\left(\zeta(2 n+1)-\sum_{k=0}^{\infty} \frac{1}{(4 k)^{2 n+1}}-\sum_{k=0}^{\infty} \frac{1}{(4 k+2)^{2 n+1}}\right) \\
& =\left(2^{4 n+2}-2^{2 n+1}\right) \zeta(2 n+1) . \tag{2.5}
\end{align*}
$$

Combining equations (2.4) and (2.5), the desired results follow.
Theorem 2.3. For any integer $n>0$,

$$
\begin{aligned}
\zeta\left(2 n+1, \frac{1}{6}\right)= & \left(2^{2 n}-2^{-1}\right)\left(3^{2 n+1}-1\right) \zeta(2 n+1) \\
& +\left(2^{2 n}+2^{-1}\right) \frac{(-1)^{n+1}(6 \pi)^{2 n+1} B_{2 n+1}(1 / 3)}{\sqrt{3}(2 n+1)!}
\end{aligned}
$$

and

$$
\begin{aligned}
\zeta\left(2 n+1, \frac{5}{6}\right)= & \left(2^{2 n}-2^{-1}\right)\left(3^{2 n+1}-1\right) \zeta(2 n+1) \\
& +\left(2^{2 n}+2^{-1}\right) \frac{(-1)^{n+1}(6 \pi)^{2 n+1} B_{2 n+1}(2 / 3)}{\sqrt{3}(2 n+1)!}
\end{aligned}
$$

Proof. For any integer $n>0$,

$$
\begin{aligned}
& \zeta\left(2 n+1, \frac{1}{3}\right)=\sum_{k=0}^{\infty}\left(2 k+\frac{1}{3}\right)^{-2 n-1}+\sum_{k=0}^{\infty}\left(2 k+1+\frac{1}{3}\right)^{-2 n-1} \\
& =2^{-2 n-1} \zeta\left(2 n+1, \frac{1}{6}\right)+2^{-2 n-1} \zeta\left(2 n+1, \frac{2}{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \zeta\left(2 n+1, \frac{2}{3}\right)=\sum_{k=0}^{\infty}\left(2 k+\frac{2}{3}\right)^{-2 n-1}+\sum_{k=0}^{\infty}\left(2 k+1+\frac{2}{3}\right)^{-2 n-1} \\
& =2^{-2 n-1} \zeta\left(2 n+1, \frac{1}{3}\right)+2^{-2 n-1} \zeta\left(2 n+1, \frac{5}{6}\right)
\end{aligned}
$$

Hence we have that, for $n>0$,

$$
\begin{equation*}
\zeta\left(2 n+1, \frac{1}{6}\right)=2^{2 n+1} \zeta\left(2 n+1, \frac{1}{3}\right)-\zeta\left(2 n+1, \frac{2}{3}\right) \tag{2.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\zeta\left(2 n+1, \frac{5}{6}\right)=2^{2 n+1} \zeta\left(2 n+1, \frac{2}{3}\right)-\zeta\left(2 n+1, \frac{1}{3}\right) \tag{2.7}
\end{equation*}
$$

Apply Theorem 2.1 to (2.6) and (2.7). Then the theorem follows.
Unfortunately, for other values of α, Theorem 1.1 does not provide useful equations like (2.2) or (2.4). For example, we obtain that, for $r_{2}=\frac{1}{8}$ in (2.1),

$$
\begin{aligned}
& \zeta\left(2 n+1, \frac{1}{8}\right)+\zeta\left(2 n+1, \frac{3}{8}\right)-\zeta\left(2 n+1, \frac{5}{8}\right)-\zeta\left(2 n+1, \frac{7}{8}\right) \\
& =\frac{(-1)^{n}(8 \pi)^{2 n+1}}{\sqrt{2}(2 n+1)!}\left(8^{2 n+1} B_{2 n+1}\left(\frac{3}{8}\right)+B_{2 n+1}\left(\frac{3}{4}\right)\right)
\end{aligned}
$$

This is why our results are very resrictive.

References

[1] B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in the spirit of Ramanujan, J. Reine. Angew. Math. 304 (1978), 332-365.
[2] S. Lim, Infinite series identities from modular transformation formulas that stem from generalized Eisenstein seires, Acta Arith. 141 (2010), no 3, 241-273.
[3] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon Press-Oxford, 1986.

Sung-Geun Lim

Department of Mathematics Education, Mokwon University, 88, Doanbuk-ro, Seo-gu, Daejeon, 35349, Korea.
E-mail: sglimj@mokwon.ac.kr

