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SOME RELATIONS BETWEEN ((2n+ 1) AND ((2n+1,q)
FOR SPECIAL VALUES OF o

SUNG-GEUN LM

Abstract. Hurwitz zeta function occurs in various parts of math-
ematics. In particular, it plays an important role in some area of
number theory. In this paper, using a certain transformation for-
mula, we find some identities of relations between ((2n + 1) and
¢(2n + 1, &) for special values of a.

1. Introduction and preliminaries

The Hurwitz zeta function is defined for complex s with Re(s) > 1
and a with Re(a) > 0 by

1
((s,a) = Zm

n=0

Let ((s) be the Riemann zeta function. For @ = %, it is easy to see that

¢ (s3) = @ - 1<),

which gives a relation between ((s) and ((s, %) In this paper, we find
this kind of relations between ((2n+1) and {(2n+1, «) for special values
of a and positive integer n.

Let N be a positive integer and let H = {7 € C | Im(7) > 0}. For every
T e H,

at +b

ct+d

denotes a modular transformation with ¢ > 0 and ¢ = 0 (mod N).
Let 7 = (r1,72) and h = (hy, hs) denote real vectors, and define the

Vr=V(r)=
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associated vectors R and H by
R = (R1, Ry) = (ary + cro,bry + dra)
and
H = (Hi, Hy) = (dhy — bha, —ch;y + ahs).
For a complex number w, let e(w) = > and let the branch of the

argument be defined by —7 < arg w < w. For 7 € H and any complex
number s, define

An(rsmh) = > Z e (Nmhy + (Nm + )7 + r2)(n = ha))

=
Nm+r1>0 n—ha>0 (n = h2)

and
H(r,57,1) = An(r,sim.h) + ¢ (5) Aw(r, 55—, <)

For real z, § and complex s with Re(s) > 1, let

U(x,B,s) = Z (s(f:;))s.
n+3>0
Let Ay denote the characteristic function of the integers modulo N. For
a real number z, [z] denotes the greatest integer less than or equal to
x and {z} := x — [z]. Then the modular transformation formula for
Hy(7,s;7,h) is given by the following theorem which plays a principal
role to obtain our results.

Theorem 1.1. ([2]) Let @ = {7 € C | Re() > —2} and oy = c{Ro}—
Nd{R1/N}, c=cN. Then for T € Q and all s,
(et +d)"*Hnx(VT,s;m,h)
::ELV(T>S;E;}¥)

—An(r) (fé;@g}s}zéq)_F—Es%)s (1/,(}12,73, s)+e (;) Y(—hg, —r9, s))

+)\N(R1)e(_(]i12w (w(H27R2,8)+€<—§) Y(—Hz, — Ry, ))

+(2mi) " *Ly(7,s; R, H),
where

lqv(T,S;}%,f{)

c/

—Ze —H1(Nj+ N[R1/N] —c) — Hy([Ro] + 1+ [(Njd + on)/c]

e—(cT+d)(Nj—N{R1/N}u/c {(Njd+en)/ctu
s—1

/u du,

c

e—(ertd)u —e(cHy + dHy) e* — e(—H>)

—d))



Relations between ¢(2n + 1) and {(2n + 1, «) 563

where C is a loop beginning at 400, proceeding in the upper half-plane,
encircling the origin in the positive direction so that u = 0 is the only
zero of

(e~ — e(cHy +dHy)) (¢ — e(~Hy))

lying inside the loop, and then returning to +oo in the lower half plane.
Here, we choose the branch of u® with 0 < arg u < 2.

In fact, Theorem 1.1 is another version of Theorem 2.1 in [1]. If N =1
in Theorem 1.1, then we have Theorem 2.1 in [1]. Also, if " = (%, 72)
and b/ = (Nhq, hg), then we see that Hy(7,s;r,h) = H(NT,s;r',1).

2. Main results

Let By(z), n > 0 be the Bernoulli polynomials which come from the
generating function

ZB — (|t < 2m).

The n-th Bernoulli number B, n > 0, is defined by B, = B,(0). Put
B,(x) = B,({z}), n > 0. Let N =1, r = (r1,r2), h ( ,0), Vr =
1-— % and s = —2n, where n,r; € Z, ro ¢ Z. By Theorem 1.1, we see
that
2 Hy (V7,—2n;7,0) = Hi (1, —2n; R, 0) + (2m4)?" Ly (7, —2n; R, 0)
) I'(s) s
=l e (WOr28) + e (5) 90, -r2.)

It is easy to see that

Z Z e((m+ 1)V +r)k)+e(((m+1)VT —ro)k)

Hy(V1,—2n;7,0) J2n 1

mUkl

B Z cosh(2mikrs) o—rik/T
B k2 tlginh(wik/7)

B i 2 cos(2mrok)

— k2n+1(627rik/‘r _ 1)

e(((m+{ra})7 —ro)k) +e(((m — {r2})7 + r2)k)

k2n+1
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i cosh(mik(—2ry + (2{rs} — 1)7))'

k;2"+1 sinh(—mikT)

Next, using the residue theorem, we have

T(1={r2})u  q
— 9y —2n— 16
Li(1,—2n; R,0) = / — _1 e”—ldu
Con By(1 — {rs}) >, Bm
2n—3 ¢ 2 U™
=7 [ Zi< W'Y B a
m=0

2n-+2
B B
Y, Z k(TQ) 2n+2— ka 1.

‘ E'(2n 42 — k)!

For Re(s) < 0, applying the formula in [3], p. 37, we obtain that

U (00 (5) w102.)

_ T(s) 1 o2 1
~(—2miT)$ ; (m+r2)5+ (2) Zo(mrg)5>

m—+ro>0 m—ro>

I'(s .
— o (65, rad) 4 (1~ {r2))
—i7) 75 [ sin(2km{ry} + 78/2 S sin(—2km{ry} + ws/2
_ Z 4 TS
~ sin(rs) prt kl=s ¢ — kl=s
B (_,L',]_)fs 0 e*2k7T’L’{T2}(€3TFiS/2 _ 6727”‘3/2)
~ sin(rs) pard kl—s
. 0 672kﬂ'i{r2}
=7 kl—s
k=0

Hence it follows that, for n > 0,

r
i, e ($0m2.9) e (3) 0. -n2.0)
— 7‘2n1/}(—7'2, O, 2n + 1)

Putting 7 = 4, we now obtain that, for n > 0,

2cos(2mrak) (—1)" i cosh(mk(2ry — 2{r2} + 1))

k2n+1(627rk —1) - k2n+1gsinh (k)
k=1 k=1
2n—+2
Bi(r2)B
(2.1) )2t § e(r2) Bonva- Eik — (=1, 0,20+ 1).

k:' 2n+2—k)!
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Theorem 2.1. For any integer n > 0,

1 32+l (—=1)"*H(6m)2" M By, 1(1/3)
§<2n+1 3> — C2n+1)+ 232n 1 1)
and

g B 32n+1 ~1 (_1)n+1(67r)2n+1B2n+1(2/3)
g<2n+1,3> = C(2n+1) + N TR .

Proof. Let ro = % and see the imaginary parts in (2.1). Recalling
that Bogt1 =0, k > 1, we have

2 By(1/3)Bango—r " Boj1(1/3) Bop_op,
tm ( k(20 + 22—+1i). )= ;0(_1)k (2k2++ i)!(?n —22k:2++11)!
(=)"(2m)*" ! Bonya (1/3)

k=0

2(2n +1)!
Since
1 o0 e—2k7ri/3
k=1
2. cos(2km/3) = sin(2k7/3)
= Z g2kl ! L2l
k=1 k=1

we see that

Im <¢ (—;, 0,2n + 1)) Sm,gff{?))

72 (3k + 1)2n+1 TZ 3k+2 2n+1

0

= —7'3*2"*1 (g (2n+1,3> —g<2n+1,3>> .

Thus, equating the imaginary parts in (2.1), we obtain that

1 2\ (=1)"H6m)* T Byyg (1/3)
(2@(2n+1,3) —C <2n+1,3) = V@t 1)l .

E
—_

&

%1\3

An elementary calculation shows that

(2.3) ¢ <2n + 1, ;) +¢ <2n +1, §> = (3%t _1)¢(2n + 1).

Adding and subtracting (2.2) and (2.3), we complete the proof of the
theorem. n
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Theorem 2.2. For any integer n > 0,
(—1)n+126n+17r2"+132n+1(1/4)

1 n n
¢ <2n +1, 4> = 2222 —1)¢(2n + 1) + (2n+1)!

and
(_1)n+1 26n+17r2n+132n+1 (3/4)

3\ o 620+l
C<2n—|—1,4>—2 @ —1)¢2n +1) + (2n +1)!

Proof. Let 1o = i and equate the imaginary parts in (2.1). By the
similar way in the proof of Theorem 2.1, we have

Im <2n+2 By (1/4)Bant2- kﬁ) _ (=1)"(2m)*" M Bynga (1/4)

= E'(2n 42— k)! 2(2n +1)!

and

1 sin(km/2)
Im <q,z) (4,0,2n+1>) Z P

OO

1 1
= +
2n+1 2n+1
2 {1k + 1) 2 (4k + 3)

~ 1\ 3
= —47 201 n+1,-)—¢(2n+1,=
(¢(en+1.3) (15
Thus we obtain that

1 3 ) HY8r) 2 By L (1/4
(2C4(2n+1,4>—<<2n+1,4>_( ) (2(2)n+1)!2+1(/).

N———

It is easy to see that

§<2n+1,i> +C<2n+1,i>

[e.9]

=42 ((2n 4+ 1) —

oo

1 1
~ (4k)2n+1 o kzzo (4k + 2)2n+1>
(2.5) = (212 22t ((2n 4 1).

Combining equations (2.4) and (2.5), the desired results follow. O

Theorem 2.3. For any integer n > 0,

¢ <2n + 1, é) = (2% —27H(3**H —1)¢(2n + 1)
(=1)" " (6m)*" ! Bans1(1/3)

T2 V3(2n + 1)
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and

¢ <2n +1, 2) = (2" —27H (3" ~1)¢(2n + 1)
(=1)" 1 (6m)*" Bopy1(2/3)
V3(2n +1)! '

+(22 427

Proof. For any integer n > 0,

1 e e} 1 —2n—1 o0 1 —2n—1
m+1,-) = % + - % +1+ =
C(n+,3) Z(k+3> +Z(k+ +3>

k=0 k=0

1 2
=9 2n1¢ <2n +1, 6) + 272 1¢ <2n +1, 3)

2 o] ) —2n—1 00 2 —2n—1
C<2n—|—1,3>: <2k+3> +Z<2k+1+3>
k=0 k=0

1
=9 -l <2n +1, 3) + 272 1¢ <2n +1, 2) .

and

Hence we have that, for n > 0,

(2.6) ¢ <2n +1, é) = 22ntle <2n +1, ;) —C (Qn +1, ?,)

and
5 2n+1 2 1
@7 ¢(2n+1,2) =22 ¢ (2n+ 1,2 ) —¢(2n+1,2 ).
6 3 3
Apply Theorem 2.1 to (2.6) and (2.7). Then the theorem follows. [

Unfortunately, for other values of a;, Theorem 1.1 does not provide useful
equations like (2.2) or (2.4). For example, we obtain that, for ro = § in

S (e (e ()

This is why our results are very resrictive.

C<2n+1,é>+C<2n+1,2)—<(2n+1,5> —C<2n+1,7>



568 Sung-Geun Lim

References

[1] B. C. Berndt, Analytic Eisenstein series, theta-functions, and series relations in
the spirit of Ramanugjan, J. Reine. Angew. Math. 304 (1978), 332-365.

[2] S. Lim, Infinite series identities from modular transformation formulas that stem
from generalized Eisenstein seires, Acta Arith. 141 (2010), no 3, 241-273.

[3] E. C. Titchmarsh, The theory of the Riemann zeta-function, Clarendon
Press-Oxford, 1986.

Sung-Geun Lim

Department of Mathematics Education, Mokwon University,
88, Doanbuk-ro, Seo-gu, Daejeon, 35349, Korea.

E-mail: sglimj@mokwon.ac.kr



