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SOME RELATIONS BETWEEN ζ(2n+ 1) AND ζ(2n+ 1, α)

FOR SPECIAL VALUES OF α

Sung-Geun Lim

Abstract. Hurwitz zeta function occurs in various parts of math-
ematics. In particular, it plays an important role in some area of
number theory. In this paper, using a certain transformation for-
mula, we find some identities of relations between ζ(2n + 1) and
ζ(2n+ 1, α) for special values of α.

1. Introduction and preliminaries

The Hurwitz zeta function is defined for complex s with Re(s) > 1
and α with Re(α) > 0 by

ζ(s, α) =
∞∑
n=0

1

(n+ α)s
.

Let ζ(s) be the Riemann zeta function. For α = 1
2 , it is easy to see that

ζ

(
s,

1

2

)
= (2s − 1)ζ(s),

which gives a relation between ζ(s) and ζ(s, 12). In this paper, we find
this kind of relations between ζ(2n+1) and ζ(2n+1, α) for special values
of α and positive integer n.
Let N be a positive integer and let H = {τ ∈ C | Im(τ) > 0}. For every
τ ∈ H,

V τ = V (τ) =
aτ + b

cτ + d

denotes a modular transformation with c > 0 and c ≡ 0 (mod N).
Let r = (r1, r2) and h = (h1, h2) denote real vectors, and define the
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associated vectors R and H by

R = (R1, R2) = (ar1 + cr2, br1 + dr2)

and
H = (H1, H2) = (dh1 − bh2,−ch1 + ah2).

For a complex number w, let e(w) = e2πiw and let the branch of the
argument be defined by −π ≤ arg w < π. For τ ∈ H and any complex
number s, define

AN (τ, s; r, h) =
∑

Nm+r1>0

∑
n−h2>0

e (Nmh1 + ((Nm+ r1)τ + r2)(n− h2))
(n− h2)1−s

and

HN (τ, s; r, h) = AN (τ, s; r, h) + e
(s

2

)
AN (τ, s;−r,−h).

For real x, β and complex s with Re(s) > 1, let

ψ(x, β, s) :=
∑

n+β>0

e(nx)

(n+ β)s
.

Let λN denote the characteristic function of the integers modulo N . For
a real number x, [x] denotes the greatest integer less than or equal to
x and {x} := x − [x]. Then the modular transformation formula for
HN (τ, s; r, h) is given by the following theorem which plays a principal
role to obtain our results.

Theorem 1.1. ([2]) LetQ =
{
τ ∈ C | Re(τ) > −d

c

}
and %N = c{R2}−

Nd{R1/N}, c = c′N . Then for τ ∈ Q and all s,

(cτ + d)−sHN (V τ, s; r, h)
= HN (τ, s;R,H)

−λN (r1)
e(−r1h1)Γ(s)

(−2πi)s(cτ + d)s

(
ψ(h2, r2, s) + e

(s
2

)
ψ(−h2,−r2, s)

)
+λN (R1)

e(−R1H1)Γ(s)

(−2πi)s

(
ψ(H2, R2, s) + e

(
−s

2

)
ψ(−H2,−R2, s)

)
+(2πi)−sLN (τ, s;R,H),

where

LN (τ, s;R,H)

=

c′∑
j=1

e(−H1(Nj +N [R1/N ]− c)−H2([R2] + 1 + [(Njd+ %N )/c]− d))

·
∫
C
us−1

e−(cτ+d)(Nj−N{R1/N})u/c

e−(cτ+d)u − e(cH1 + dH2)

e{(Njd+%N )/c}u

eu − e(−H2)
du,
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where C is a loop beginning at +∞, proceeding in the upper half-plane,
encircling the origin in the positive direction so that u = 0 is the only
zero of (

e−(cτ+d)u − e(cH1 + dH2)
)

(eu − e(−H2))

lying inside the loop, and then returning to +∞ in the lower half plane.
Here, we choose the branch of us with 0 < arg u < 2π.

In fact, Theorem 1.1 is another version of Theorem 2.1 in [1]. If N = 1
in Theorem 1.1, then we have Theorem 2.1 in [1]. Also, if r′ = ( r1N , r2)
and h′ = (Nh1, h2), then we see that HN (τ, s; r, h) = H(Nτ, s; r′, h′).

2. Main results

Let Bn(x), n ≥ 0 be the Bernoulli polynomials which come from the
generating function

text

et − 1
=

∞∑
n=0

Bn(x)
tn

n!
(|t| < 2π).

The n-th Bernoulli number Bn, n ≥ 0, is defined by Bn = Bn(0). Put
B̄n(x) = Bn({x}), n ≥ 0. Let N = 1, r = (r1, r2), h = (0, 0), V τ =
1 − 1

τ and s = −2n, where n, r1 ∈ Z, r2 /∈ Z. By Theorem 1.1, we see
that

τ2nH1(V τ,−2n; r, 0) = H1(τ,−2n;R, 0) + (2πi)2nL1(τ,−2n;R, 0)

− lim
s→−2n

Γ(s)

(−2πiτ)s

(
ψ(0, r2, s) + e

(s
2

)
ψ(0,−r2, s)

)
.

It is easy to see that

H1(V τ,−2n; r, 0) =

∞∑
m=0

∞∑
k=1

e(((m+ 1)V τ + r2)k) + e(((m+ 1)V τ − r2)k)

k2n+1

=

∞∑
k=1

cosh(2πikr2)

k2n+1 sinh(πik/τ)
e−πik/τ

=

∞∑
k=1

2 cos(2πr2k)

k2n+1(e2πik/τ − 1)

and

H1(τ,−2n;R, 0) =

∞∑
m=0

∞∑
k=1

e(((m+ {r2})τ − r2)k) + e(((m− {r2})τ + r2)k)

k2n+1
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=
∞∑
k=1

cosh(πik(−2r1 + (2{r2} − 1)τ))

k2n+1 sinh(−πikτ)
.

Next, using the residue theorem, we have

L1(τ,−2n;R, 0) =

∫
C
u−2n−1

e−τ(1−{r2})u

e−τu − 1

1

eu − 1
du

= (−τ)−1
∫
C
u−2n−3

∞∑
`=0

B`(1− {r2})
`!

(−τu)`
∞∑
m=0

Bm
m!

um du

= −2πi
2n+2∑
k=0

B̄k(r2)B2n+2−k
k!(2n+ 2− k)!

τk−1.

For Re(s) < 0, applying the formula in [3], p. 37, we obtain that

Γ(s)

(−2πiτ)s

(
ψ(0, r2, s) + e

(s
2

)
ψ(0,−r2, s)

)
=

Γ(s)

(−2πiτ)s

( ∑
m+r2>0

1

(m+ r2)s
+ e

(s
2

) ∑
m−r2>0

1

(m− r2)s

)
=

Γ(s)

(−2πiτ)s
(
ζ(s, {r2}) + eπisζ(s, 1− {r2})

)
=

(−iτ)−s

sin(πs)

( ∞∑
k=1

sin(2kπ{r2}+ πs/2)

k1−s
+ eπis

∞∑
k=1

sin(−2kπ{r2}+ πs/2)

k1−s

)

=
(−iτ)−s

sin(πs)

∞∑
k=0

e−2kπi{r2}(e3πis/2 − e−2πis/2)
k1−s

= τ−s
∞∑
k=0

e−2kπi{r2}

k1−s
.

Hence it follows that, for n > 0,

lim
s→−2n

Γ(s)

(−2πiτ)s

(
ψ(0, r2, s) + e

(s
2

)
ψ(0,−r2, s)

)
= τ2nψ(−r2, 0, 2n+ 1).

Putting τ = i, we now obtain that, for n > 0,

∞∑
k=1

2 cos(2πr2k)

k2n+1(e2πk − 1)
= (−1)n

∞∑
k=1

cosh(πk(2r1 − 2{r2}+ 1))

k2n+1 sinh(πk)

−(2π)2n+1
2n+2∑
k=0

B̄k(r2)B2n+2−k
k!(2n+ 2− k)!

ik − ψ(−r2, 0, 2n+ 1).(2.1)
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Theorem 2.1. For any integer n > 0,

ζ

(
2n+ 1,

1

3

)
=

32n+1 − 1

2
ζ(2n+ 1) +

(−1)n+1(6π)2n+1B2n+1(1/3)

2
√

3(2n+ 1)!

and

ζ

(
2n+ 1,

2

3

)
=

32n+1 − 1

2
ζ(2n+ 1) +

(−1)n+1(6π)2n+1B2n+1(2/3)

2
√

3(2n+ 1)!
.

Proof. Let r2 = 1
3 and see the imaginary parts in (2.1). Recalling

that B2k+1 = 0, k ≥ 1, we have

Im

(
2n+2∑
k=0

B̄k(1/3)B2n+2−k
k!(2n+ 2− k)!

ik

)
=

n∑
k=0

(−1)k
B̄2k+1(1/3)B2n−2k+1

(2k + 1)!(2n− 2k + 1)!

=
(−1)n(2π)2n+1B2n+1(1/3)

2(2n+ 1)!
.

Since

ψ

(
−1

3
, 0, 2n+ 1

)
=

∞∑
k=1

e−2kπi/3

k2n+1

=

∞∑
k=1

cos(2kπ/3)

k2n+1
− i

∞∑
k=1

sin(2kπ/3)

k2n+1
,

we see that

Im

(
ψ

(
−1

3
, 0, 2n+ 1

))
= −

∞∑
k=1

sin(2kπ/3)

k2n+1

= −
√

3

2

∞∑
k=0

1

(3k + 1)2n+1
+

√
3

2

∞∑
k=0

1

(3k + 2)2n+1

= −
√

3

2
· 3−2n−1

(
ζ

(
2n+ 1,

1

3

)
− ζ

(
2n+ 1,

2

3

))
.

Thus, equating the imaginary parts in (2.1), we obtain that

ζ

(
2n+ 1,

1

3

)
− ζ

(
2n+ 1,

2

3

)
=

(−1)n+1(6π)2n+1B2n+1(1/3)√
3(2n+ 1)!

.(2.2)

An elementary calculation shows that

ζ

(
2n+ 1,

1

3

)
+ ζ

(
2n+ 1,

2

3

)
= (32n+1 − 1)ζ(2n+ 1).(2.3)

Adding and subtracting (2.2) and (2.3), we complete the proof of the
theorem.
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Theorem 2.2. For any integer n > 0,

ζ

(
2n+ 1,

1

4

)
= 22n(22n+1 − 1)ζ(2n+ 1) +

(−1)n+126n+1π2n+1B2n+1(1/4)

(2n+ 1)!

and

ζ

(
2n+ 1,

3

4

)
= 22n(22n+1 − 1)ζ(2n+ 1) +

(−1)n+126n+1π2n+1B2n+1(3/4)

(2n+ 1)!
.

Proof. Let r2 = 1
4 and equate the imaginary parts in (2.1). By the

similar way in the proof of Theorem 2.1, we have

Im

(
2n+2∑
k=0

B̄k(1/4)B2n+2−k
k!(2n+ 2− k)!

ik

)
=

(−1)n(2π)2n+1B2n+1(1/4)

2(2n+ 1)!

and

Im

(
ψ

(
−1

4
, 0, 2n+ 1

))
= −

∞∑
k=1

sin(kπ/2)

k2n+1

= −
∞∑
k=0

1

(4k + 1)2n+1
+
∞∑
k=0

1

(4k + 3)2n+1

= −4−2n−1
(
ζ

(
2n+ 1,

1

4

)
− ζ

(
2n+ 1,

3

4

))
.

Thus we obtain that

ζ

(
2n+ 1,

1

4

)
− ζ

(
2n+ 1,

3

4

)
=

(−1)n+1(8π)2n+1B2n+1(1/4)

2(2n+ 1)!
.(2.4)

It is easy to see that

ζ

(
2n+ 1,

1

4

)
+ ζ

(
2n+ 1,

3

4

)
= 42n+1

(
ζ(2n+ 1)−

∞∑
k=0

1

(4k)2n+1
−
∞∑
k=0

1

(4k + 2)2n+1

)
= (24n+2 − 22n+1)ζ(2n+ 1).(2.5)

Combining equations (2.4) and (2.5), the desired results follow.

Theorem 2.3. For any integer n > 0,

ζ

(
2n+ 1,

1

6

)
= (22n − 2−1)(32n+1 − 1)ζ(2n+ 1)

+(22n + 2−1)
(−1)n+1(6π)2n+1B2n+1(1/3)√

3(2n+ 1)!
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and

ζ

(
2n+ 1,

5

6

)
= (22n − 2−1)(32n+1 − 1)ζ(2n+ 1)

+(22n + 2−1)
(−1)n+1(6π)2n+1B2n+1(2/3)√

3(2n+ 1)!
.

Proof. For any integer n > 0,

ζ

(
2n+ 1,

1

3

)
=
∞∑
k=0

(
2k +

1

3

)−2n−1
+
∞∑
k=0

(
2k + 1 +

1

3

)−2n−1
= 2−2n−1ζ

(
2n+ 1,

1

6

)
+ 2−2n−1ζ

(
2n+ 1,

2

3

)
and

ζ

(
2n+ 1,

2

3

)
=
∞∑
k=0

(
2k +

2

3

)−2n−1
+
∞∑
k=0

(
2k + 1 +

2

3

)−2n−1
= 2−2n−1ζ

(
2n+ 1,

1

3

)
+ 2−2n−1ζ

(
2n+ 1,

5

6

)
.

Hence we have that, for n > 0,

ζ

(
2n+ 1,

1

6

)
= 22n+1ζ

(
2n+ 1,

1

3

)
− ζ

(
2n+ 1,

2

3

)
(2.6)

and

ζ

(
2n+ 1,

5

6

)
= 22n+1ζ

(
2n+ 1,

2

3

)
− ζ

(
2n+ 1,

1

3

)
.(2.7)

Apply Theorem 2.1 to (2.6) and (2.7). Then the theorem follows.

Unfortunately, for other values of α, Theorem 1.1 does not provide useful
equations like (2.2) or (2.4). For example, we obtain that, for r2 = 1

8 in
(2.1),

ζ

(
2n+ 1,

1

8

)
+ ζ

(
2n+ 1,

3

8

)
− ζ

(
2n+ 1,

5

8

)
− ζ

(
2n+ 1,

7

8

)
=

(−1)n(8π)2n+1

√
2(2n+ 1)!

(
82n+1B2n+1

(
3

8

)
+B2n+1

(
3

4

))
This is why our results are very resrictive.
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