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A TANGENTIAL INTERPOLATION PROBLEM FOR
RATIONAL MATRIX FUNCTIONS FROM A
CLASSICAL POINT OF VIEW

JEONGOOK KiMm

Abstract. By applying a classical approach for scalar rational in-
terpolation problem, certain type of minimal interpolation problem
for rational matrix functions is solved. It is shown that an ap-
propriately defined matrix plays a key role in solving the minimal
problem.

1. Introduction

Interpolation problems for scalar rational functions have been studied
by using Pade approximation, Euclidean algorithm, Lowner matrix as
main tools. For a review of many approaches to this problem, see [9)].
Also, interpolation problems for rational matrix functions have been
studied through classical matrix theories, module theories, or through
the null-pole structure of rational matrix functions. This paper hires
the last approach which is well presented in [6]. Interpolation problems
for rational matrix functions play an important role in systems theory,
network theory and control theory. A classical paper on the occurrence
of interpolation problems in the network theory and systems theory is
[10].

For a scalar rational function, the spectral data consisting of zeros
and poles with their respective multiplicities uniquely determines the
function up to a nonzero multiplicative factor. But due to the richness
of the spectral structure of a rational matrix function, reconstruction of
a rational matrix function from a given spectral data is not that simple.
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In this paper, a classical approach to solve scalar rational interpola-
tion problem is applied to a tangential interpolation problem for rational
matrix functions. By a classical approach, we mean the approach which
considers the solvability of the system of linear equations derived from
the interpolation data to solve the scalar interpolation problem. In par-
ticular, we are interested in a solution of minimal complexity, measured
by McMillan degree. Here by an M x N rational matrix fuction, we mean
an M x N matrix with a scalar raional function as its each entry. If we
define the poles of a rational matrix function as the poles of each entry,
a rational matrix function has a finite number of poles. The McMillan
degree of a raional matrix function W(z) is defined to be the number of
the poles of W(z) and denoted by §(W).

Here, an important basic idea to deal with rational matrix functions is
to represent a proper (i.e., analytic at infinity) rational matrix function
W (z) by

W(z) =D+ C(zI — A)™'B.

Then, the zero and pole data for W (z) is encoded in constant matrices
A, B, C, D. This approach was spurred by diverse applications in many
engineering context. For the details of this approach including how to
count the number of the poles of a rational matrix function , readers are
referred to [6].

The interpolation problem for the scalar case is the following. Given
distinct points z1,---, 2, in the complex plain C and given complex

numbers {wij}iﬁl?:l, find a rational function y(z) in the form of

(11) y(Z) = d(Z), ng(n7 d) = 1
such that
(1.2) y(ifl)(zj):wij, i=1,-,p5, j=1,---,n

where gcd means the greatest common divisor of polynomials. In the
scalar case, the McMillan degree of y(z) in (1.1) is defined by

d(y) = maz{degn(z), degd(z)}.

Some special cases of this problem were studied by Belevich( see [4]) and
Donoghue(see [7]) and the general case was understood by Antoulas and
Anderson(see [1]). In the latter approach, the Lowner matriz is a key
notion. For simplicity, if we assume, in (1.2), u; =1, i =1,--- ,n and
n = 2m+ 1 for some nonnegative integer m, then the associated Lowner
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matriz is given by

| Wmt14i W5
(1.3) L= { ZmA 14 Lgigm,1§j§m+1 '

This paper consists of two sections except the first introductory sec-
tion. The second section introduces the already existing results for the
scalar case: If there exists a solution of McMillan degree no more than 3,
then it is the unique solution of McMillan degree ¢, where ¢ is the rank of
the matrix L given by(1.3). Otherwise, the minimal possible McMillan
degree for the solutions of (1.2) is n — ¢. The proof of the main results
for the scalar case, Theorem 2.2, is redone by the author. In the third
section, this author’s efforts are made to extend the approach of the
second section to the matrix case. In the matrix case, the null-pole cou-
pling matriz T’ which is introduced in (3.3) plays the role of the Lowner
matriz of the scalar case. For given (tangential) interpolation conditions
for rational matrix functions, matrix anlogue of the scalar generic case
is solved and a special solution with low McMillan is found in realization
form. If the involved null -pole coupling matriz has full column rank,
this special solution has the minimal possible McMillan degree among
all the solutions. Even if the problem considered in the third section
is a nice special case, it turns out the classical approach depending on
the Lowner matrix and the solvability of linear equations derived from
the interpolation data is not very enlighening for the matrix case. The
major difficulty is the collapse of Theorem 2.1 ( compare Theorem 2.1
and Theorem 3.1).

2. Scalar rational interplation problems

In this section, summary of some results for the scalar rational inter-
polation problem is given. For the details of the contents in this section,
readers are referred to [1]. The problem considered here is the following.
Given distinct points z1, - - , 2z, in the complex plane C and given com-
plex numbers {w;}7_;, find a rational function f(2) in the form of (1.1)
which has the minimal possible McMillan degree among the rational
functions satisfying the interpolating conditions

(21) f(ZJ) :’LU]', jzl, ,n.
To fix the notation, we assume
n=2m+1

(For the results of the general case, readers are referred to [1]).
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The classical approach to this problem is based on the naive ( but in
general false) hope that the interpolation problem (2.1) can be solved
by a raional function of McMillan degree at most m. Indeed, if we put

1)= 5

with
n(z):=ap+az+ -+ apz™
d(z) :==by+biz+ -+ bpz™

then from (2.1) the following system of linear equations are derived;

or equivalently,
gy ]
a1
1 = 20w wiz - w1t
1 =z zZy' Wy W2zy v W2Zy'
(2.3) ) @m0,
: —bo
1 =z, Znt Wy WpZp vt WpZnt —b
—_bm_

The system of linear equations (2.2) or (2.3) is called the modified inter-
polation problem in [9] and has often been studied as an intermediate
tool in solving the interpolation problem (2.1). The system of linear
equations (2.3) always has a nontrivial solution since the system of lin-
ear equations to be solved has (2m+1) equations and (2m+2) variables.
But, in this approach, the difficulty arises if in the solution of the modi-
fied in terpolation problem (2.2) d(z) has a zero at one of the prescribed

points zj,---,2,. Then the polynomials n(z) and d(z) have common

zero at the point and the function f(z) = Z(; may not interpolate at

the point. Those points are called unattainable or inaccessible points.
By the generic case, we refer to the case where there is no inaccessible
point. Hence, in the generic case, a solution of McMillan degree at most
m exists. In [4], the problem of finding a solution of McMillan degree at
most m is analyzed more systematically by using the Lowner matrix L
defined by (1.3). To introduce his approach, we start with the following
theorem which is crucial in his analysis.
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Theorem 2.1. Let
n(z)
)= —

be a rational function of McMillan degree q and L be any p x | Lowner
matrix built on (p + 1) distinct points in C with p > q, | > q. Then

ged(n,d) =1

rank L = q.
For the proof, see [1] or [4].
Let L be the m x (m + 1) Lowner matrix given by (1.3) and
rank L = q.

Then a solution of the modified interpolation problem (2.2) or (2.3) with
degn(z) < m, degd(z) < m can be constructed in the following way, if
it exists. Let L be an (n — ¢ — 1) x (¢ + 1) Lowner matrix defined by

e — W
(2.4) L= [ ] icngo1, 1<j<qt1-
Zg+1+i — Zj

By Corollart 2.24 of [1] which states that any r x [ Lowner matrix
constructed from the same data for L with r > ¢, [ > ¢ has rank q,

(2.5) rankL = q.

Since (n —q — 1) x (g + 1) matrix L has rank g, there exists a (¢ + 1)
-dimensional nonzero vector

c:=ler, o cqp)t
satisfying
(2.6) Le=0.
Then, (2.6) is expressed as
(2.7) %c'wk_wj:() k=q+2,qg+3,---,n
. 2y q+2,q+3,,

Let

(2.8) d(z) := ch | 11 '(z —2)
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q+1 q+1
(2.9) a(z) = cuw; [[ (z—=)
=1 i=1,i#]

and f(z) be a rational function satisfying
(2.10) f(2)d(z) = n(z).

Since at least one ¢; is not zero, by our choice of vector ¢, d(z) is not
identically zero. Thus, f(z) in (2.10) is well-defined, and

(2.11) wrd(zx) —(zp) =0 for k=1,--- ,n.

Indeed, for k =1,--- ,q+1, the equalty (2.11) is obtained as soon as we
plug z = z; in ( 2.8) and (2.9). For k > ¢+2, (2.11) is derived from (2.7)
by multiplying both sides by H?Ii(zk —2;). Hence, if d(z) in (2.8) has no
zeroes at {21, 22, -+ , 2, }, then f(z) given by (2.10) is a solution for (2.1)
with 6(f) = rankL. As we will see in the next theorem, if there exists
a solution of McMillan degree less than 3, f(2) is the unique minimal
solution.

The following theorem, due to [1], gives a solution of minimal possible
McMillan degree when f(z) in (2.10) is not a solution of (2.1). This
presented proof is newly done by the author. The main difference of the

author’s proof arises by applying the approach by [6].

Theorem 2.2. Let L be an m x (m + 1) Lowner matrix given by
(1.3) and d(z) and f(z) be given as in (2.8)- (2.10).
(a) If d(z) has no zeros at zj, j = 1,--- ,n, then the minimal possible
McMillan degree for the solutions to (2.1) is rank L and f is the unique
such solution.
(b) Otherwise, n — rank L is the minimal possible McMillan degree and
there is more than one solution of McMillan degree n — rank L.

Proof. (a) By Theorem 2.1, there is no solution of McMillan degree
less than ¢ := rank L. Now, we show that if f(z) is a solution of McMil-
lan degree at mot m, then f(z) = f(z). Suppose f(z) interpolates
n—a(= 2m+1—a) points (o = 0 if and only if f(z) is a solution). Then,
by the previous arguments, there exist points z;,,- - -, z;, for which

(2.12) d(zi;) =0, j=1,---,a.
Because of (2.10)(2.12),
(2.13) n(zi;) =0, j=1,,«
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Upon combining (2.12)(2.13), we can see that §(f) < ¢ — «. Hence a
rational function f(z) — f(z) has degree no more than m + ¢ — a and
has at least n — « zeros. But, the fact that m4+¢—a <2m—-a <n—«
forces that f(z) = f(z). Hence f(z) is the unique solution of McMillan
degree at most m.
(b) Suppose f(z) is not a solution. By the arguments in the proof
of (a) saying that if there is a solution of McMillan degree at most m,
then it should be f, there is no solution of McMillan degree at most m.
Suppose there exists a solution f (z) of McMillan degree ¢ > m. Let L
be a | x n Lowner matix constructed from f(z) so that [ > ¢ and n > q.
Then by Theorem 2.1, any ¢ X ¢ submatrix of L is invertible. Observing
that the Lowner matrix here is the null-pole coupling matrix in [6], we
apply Theorem 4.5.1 of [6] to conclude the minimal possible such ¢ is
n — rank L = n — q. For the proof of nonuniqueness of the solutions of
McMillan degree n — g, readers are referred to [1].
]

Remarks

(a) Theorem 2.1 for the multiple point interpolation problems is proved
in [1].

(b) If n is even and unless the rank of the
is 5, all the arguments are the same. But if rank L = 3, then § is
the minimal possible McMillan degree for the solutions and a solution
of McMillan degree § is obtained in [1] by exactly the same way to
construct a minimal solution of McMillan degree n — q.

(c) Both the multiple point case and even n case, Theorem 2.2 can be
proved by the same arguments since the results in [6] covers the general

cases including the both.

% X % Lowner matrix L
n

3. A tangential matrix interpolation problem from classical
point of view

In this section, we consider a generalization of the interpolation con-
ditions (1.2) with p; = 1 to the matrix case and try to find a solution of
minimal possible McMillan degree.

The problem we consider in this section is the following. For given
distinct points {z1, 22, , Zm, W1, W2, -+ , Wy+nN} in the complex plain
C, and nonzero vectors zi,--- , &y, in C*M and vectors y; € CPVs
(for i = 1,...,m), nonzero vectors uy,- - - , U,y in CVX! and vectors
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vj € CMx1, (for j = 1,...,m + N), find an M x N rational matrix
function W (z) for which

(3.2) W(wj)uj =v;, j=1,---,m+N,

and analytic in o.
Then we can derive M N + (M + N)m equations from the conditions
(3.1), (3.2). On the other hand, it is known that an M x N rational
matrix function of McMillan degree d is determined by M N + (M + N)d
parameters (see [5]). Hence, by comparing the number of constraints
and that of parameters, we can expect to find a solution of (3.1) and
(3.2) which has McMillan degree at most m. But, as in the scalar case,
it is not always the case. In this paper, we find a sufficient condition
for a solution of McMillan degree at most m to exist and, if it exists,
a solution of McMillan degree at most m is described in terms of given
interpolation data (see Theorm 3.3 and Theorem 3.4.).

Let I be an m x (m + N) matrix whose (4, j) entry, denoted by I';;,
is given by

:L‘Z"Uj — yiuj
3.3 ri=——"
(33) 5= e

where vectors ;j,y;, uj,v; are as in (3.1)(3.2). Then I' is an analogue
of the Lowner matrix L in(1.3). In [6], I in (3.3) is called a null-pole
coupling matriz.

Now we introduce some basic notions for rational matrix functioins.
We follow the notions of [6]. By an M x N rational matrix function,
we understand an M x N matrix with rational functions as its entries
and shall regard it as a meromorphic matrix function over the extended
complex plane C*. For an M x N proper (i.e., analytic at infinity)
rational matrix function W (z), we define a realization of W(z) to be a
representation of the form

(3.4) W(z)=D+C(zI — A)™'B, z¢ao(A)

where A, B, C, D are matrices of sizes n xn,nx N, M xn, M x N respec-
tively, and o(A) refers to the spectrum of the matrix A. A realization
(3.4) is said to be minimal if (C, A) is a null-kernel pair and (A, B) is
a full-range pair, that is
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n—1

ﬂ Ker CAT = {0}

j=0

n—1 )

> Im AIB=C".

j=0
It is known that if (3.4) is a minimal realization for W, then 6(W) = n.
If D is invertible in (3.4), then

(3.5) W Hz) =Dt —D7'C(zI — A*)"'BD!

with AX = A— BD~!C is a realization of W~!(z) and (3.4) is minimal if
and only if (3.5) is. When W has singularities at infinity, the realization
(3.4) cannot be used and is replaced by

(36) W(2)=D+Cp(2l —Ap) 'Bp + D+ 205 (I — 2As) ' By

with 0(As) = {0}. Here (Ap, Bp,Cr, D, Ax, B, Co) Of sizes np x
ng, np X N, M xXnp, M X N, Neo X Noo, Noo X N, M X ny are said to
be a realization of W. Realizations for a rational matrix function always
exist. For more details, readers are referred to [6].

A realization of the form (3.6) has the disadvantage that the value of
W at any point in C is not displayed in an obvious way. This situatoin
can be mended by representing (3.6) as follows. For o ¢ o(Ar),

(3.7) W(z) = Dy — (2 — a)Cp(zI — Ap) Y al — Ap) 'Bp+

+(z — a)Cs(I — 2As) I — aAs) ' By

with D, = W(a). The realization in the form of (3.7) is called a real-
ization for W centered at o .

If we put
L 0 __|Ar O

—(al — -1
B::[(}—IaAg)lB]ﬂ’ Ci=[Cr Cal,

then (3.7) can be represented as

(3.8) W(z) = Do + (2 — )C(2G — A)7'B.



626 Jeongook Kim

Now, we are ready to state the following theorem which is a counter-
part of Theorem 2.1. Note that the equality in Theorem 2.1 falls apart
in the next theorem.

Theorem 3.1. Let W (z) be a given M x N rational matrix function
with 6(W) = ¢ and let

Ww;) =W (zi)
3.9 I'= [m J u}
(3.9) CoowimE U icicn, 1<5<1
wheren > q, | > q and z1, -+ , zp, w1, - ,w; are distinct points in the

complex plane at which W(z) is analytic and x1,--+ ,x, are nonzero
1 x M vectors, uy,--- ,u; are N x 1 nonzero vectors. Then,

rankT < o(W).
Proof. Let
(3.10) W(z) =D+ (2 — a)C(:G — A)~*

be a minimal realization for W (z). Then, it is easily seen

(3.11)
W(wj) — W (z) = (w; — 2z)0(z:G — A)"HaG — A)(w;G — A)~'B.

By substituting (3.11) in (3.9), we have

I = [2;C(2G — A) (oG — A)(w;G — A)~' Bu,]|

1<i<n, 1<j<I

x1 0] [C(z1G — A~
0 | |C(z,G — A)7L
(3] 0
x (@G — A) [(wn1G—A)'B -+ (wG— A)"'B]
0 m

From the above equation, we see
rankT < rank(aG — A) < the size of A.

By the minimality of the realization of W (z) given in (3.10), the size of
the square matrix A is 6(W). This completes the proof. O

The following example shows that the inequality
rankl’ < §(W)
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in Theorem 3.1 is, unlike the scalar case, as sharp as we can get .

Exmaple 3.1. Let

Then, W(z) can be written as
W(z)=IT+C(zI-A)'B

POy e

Since (C,A) is a null-kernel pair and (A, B) is a full range pair, the
above equation for W(z) is a minimal realization, and hence §(W') = 2.
On the other hand, let z; = 1, 290 = 2, 1 = [1 O] , Ty = [O 1],

wy = —1, wg = =2, u; = [(ﬂ , Up = [ﬂ Then, by(3.1)(3.2), we get

with

1 1
y1=[1 1,92=[0 1],v = [0] , Vg = [‘11] By (3.3), we get

0o 1
— 1
aE
whose rank is 1. Thus, in this case, rankT' < 6(W).

Now, we want to find a condition for a solution of McMillan degree
at most m to exist. And, if it exists, we describe the solution in terms
of the given interpolation data. To do this, we need to introduce a
parametrization of all solutions. Let

21 0 x1 n
(3.12) VVEES , By:=1|:]|, B_:==—1"1]1,
0 Zm Tm Ym
C+ L ’U17 ...... 7Um+N
(3.13) o) = [
w1 0
(3.14) Ay = )
0 Wm+N

where z;, xj, y;, wj, uj, v; are the same as in (3.1),(3.2). Then, the data
set 7 := (C4,C_, Ax; A¢, By, B_;T') satisfies the conditions



628 Jeongook Kim

(A¢, B4) is a full range pair ,
(C_, Ar) is a null-kernel pair,

I satisfies the following Sylvester equation
FAﬂ— - ACF — B+C+ + B_C_,

where I' is given by (3.3).
Let o be a subset of C satisfying o(Ar) Uo(A¢) C 0. Let

(3.15) Oz) = [g; gg]

be any (M + N) + (M + N) rational matrix function having the set
- _ |G+ . :
7= c ,Ar A, [By B_];T)

as a o-null-pole triple and ¢~! be a regular N x N matrix function
having the set

7_:=(C_,A;0,0;0)

as a o-null-pole triple. Then, due to [6], a solution for (3.1)(3.2) exists
and all the solutions are parametrized as follows:

(3.16) W = (011P 4 012Q) (021 P + 022Q) ",

where P, () are rational matrix functions of sizes M x N, N x N respec-
tively and analytic in o and

(3.17) ©(O21 P + ©22Q) = 1.

Upon combining (3.16)(3.17), all solutions can be parametrized as fol-
lows: a rational matrix function W (z) analytic in o is a solution if and
only if

(3.18) [‘ﬂ e l=0 {g] :

where P, (@ are as in (3.16)(3.17).
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On the other hand, since © has 7 as its o-null-pole triple, by [6], there
exist an (m 4+ N) x N matrix B and rational functions H, K analytic in
o for which

(3.19) 0 [g] = [gj (z — A,)'B + [ggﬂ :

where H(z), K(z) satisfy the residue equation

(3.20) > Res.—.o(2I — A7V [By B_] [ggg] =TB
zoeC

and (A, B) is a full-range pair.

To use this parametrization of all the solutions, we construct a candi-
date of ¢! having 7_ as its o-null-pole triple. Since m x (m+ N) matrix
I has rank at most m, we can find (m + N) x N matrix B satisfying

(3.21) I'B =0 with rank B = N.
Let
o Hz)=C_(2I — A;)"'B

(3.22) - Z ——usb;,

where l~)j represents the j* row of B. Now we have

m+N ~
(3.23) 0 (2)p(2) = Y pi(2)uyb; == D(2),
j=1
where
m+N m+N
p(z) == H (z — wg), pj(2) = H (z — wg).
k=1 k=1, k#j

The next Lemma gives a refinement of (3.19)(3.20).

Lemma 3.2. If p~!(z) in (3.22) has 7_ as its o-null-pole triple, then
all solutions W (z) can be parametrized as (3.16), where P, ) are rational
matrix functions of sizes M x N, N x N and analytic in o satisfying

(3.24) © [g] = [gj (2] — A;)"' B+ [H (()Z)] ,
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where H(z), analytic in o, satisfies the residue equation

(3.25) > Res.—.o(2 — Ac)"'ByH(z) = 0.

z0€eC

Proof. Since the parametrization of all solutions are given by (3.16)-
(3.20), it is enough to show that B = B, K(z) = 0 in (3.19). By
(3.18)(3.19),

0 H2)=C_(2 — A;) B+ K (2),
where K(z), analytic in o, is subject to the condition (3.20). Since
¢~ !(2) has poles only inside of o and K(z) has poles only outside of o,

the above equation forces K(z) = 0. Combining (3.22) and the above
equation with K(z) = 0, we have

C_ (21 —A;)"Y(B-B)=0
Since (C_, A;) is a null-kernel pair, B = B.
O

The following is our main theorem which gives a sufficient condition
for a solution of McMillan degree at most m to exist. We see that
the genericity condition d(z) in (2.8) having no zeros at {z1,---,2,} in
the scalar case corresponds to the condition ¢! in (3.22) has 7 :=
(C_,Ar;0,0; 0) as its o-null-pole triple. Equivalently, N x N matrix
polynomial D(z) in (3.23) has full rank (that is, having no zero) at
{z1,"+ ,2zm} and l;j #0forj=14,---,m+ N.

Theorem 3.3. If D(z) in (3.23) has full rank at {z1,--- ,zp,} and
bj #0 for j =i,--- ,m+ N, then

Wo(z) := N(2)D7!(2)
is a solution of (3.1)(3.2) with McMillan degree at most m, where

m+N B
(3.26) N(z)= > pj(2)vb;.
j=1

Proof. Let Wy(z) be a rational matrix function satisfying
(3.27) Wo(2)D(z) = N(2),

and analytic at 0. Then, Wy is well-defined, since D(z) is regular (that
is, its determinant is not identically zero). Upon using the formula (3.3)
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for I', for 1 < i < m,
the i*" row of I'B = E %]7”6]-.
= Z'—’LU]'

Multiplying the both sides of I'B = 0 by p(z), we have
yiD(z;) = x;N(z), i=1,--- ,m.
By hyphothesis that D(z;) has full rank for each i, we see (3.1) holds

with Wy in place of W.
On the other hand, upon plugging z = wy, in (3.23)(3.26), we have

Wo(wg) D(wg) — N (wy)
= pi(wi) [Wo (wi)ug — vg]bg,

for k=1,---,m+ N. Since py(wy) and the row vector by, is not zero
for each k, by (3.27), the column vector Wy(wg)ur — vg = 0 for each k.
Thus, the condition (3.2) holds with Wy in place of W.

Now we compute the McMillan degree of Wy(z). By dividing D(z)
and N(z) by p(z), we have

(3.28) Wo(z) = N(2)D7(2) = Cy (2] — A;) ' Bp(2)

with p~1(2) = C_(2I — A,;)~!B. Note that all poles of Wy(z) come from
those of p(z) since Wy(z) and ¢(z) are analytic at o and o(A;) C o.
But there may occur some cancellation of poles of ¢(z) by premulti-
plying R(z) := C (2] — A;)"'B. Indeed, at oo, at least N poles of
©(z) are cancelled by the zeros of R(z). To see this, we apply Mobius
Transformation to R(z) and ¢~ 1(z) to get

R(%) =20,(I—-2A,)"'B

and ]
e I (Z)=20_(I - zA;)"'B.
z
The above two formula show that 4,0(%) has the pole factor %I N, which
is cancelled out by the zeros of R(%) at z = 0. This means at least N
poles of ¢(z) at infinity are cancelled out by R(z). Thus,
5(Wo) < 3() — N < m.
O]

Now, we express Wy(z), constructed in Theorem 3.3., in a realization
form.
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Theorem 3.4. If we choose a € C so that o~ !(a) is invertible, then

Wo(z) := C4(2G — A)~'BD!
where B satisfies (3.21) and
D=¢p"Ya)=C_(al — A;)"'B
G=I—-BD'C_(al — A;)7!
A=A, —aBD'C_(al — A;)7,
and where Cy,C_, A, T are given by (3.13),(3.14) (3.3).

Proof. Since ¢(z) is regular, there exists a« € C for which D :=
¢~ !(a) is invertible. Then, p~!(z) can be expressed in a realization
form centered at « as follows:

o H2) =D — (2 —a)C_(z] — Ax) Yol — A;)7'B,
and ¢(z) is given by

(3.29)
0(z) =D '+ (z —a)DIC_(2G* — AX) (ol — A;)"'BD™,
where
(3.30) G*:=1—(al — A;)"'BD7'C_
(3.31) A* = A, —alal — Ay)"'BD7IC_.

Substituting (3.29) in (3.28), we have
Wo(z) =Cy (2 — Ax) 'BD™ ' + (2 — 2)C4 (2] — A;)"'B
x D'C_(2:G* — A*) Y al — A;) 'BD?
=C4 (21 — Ap) H(ad — Ap)(2G* — AX) 4+ (2 —a)BD™'C_}
(3.32) x (2G* — A" Yol — A;)"'BD™L.
Substituting (3.30)(3.31) to have
(ol — Ap)(2G* — AX) 4+ (2 —@)BD™'C_ = (al — Ay)(2I — Ay).
So, (3.32) becomes
Wo(z) =Cy(ad — Ap)(2G* — A*)Y(al — A;)"'BD™!
=C{(ad — A7) (2G> — A*)(al — Ay)" '} 'BD7L.
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Again, by substituting (3.30)(3.31) in places of G*, A*, the above for-
mula is reduced to

Wo(z) = Cy(2G — A)~'BD™!

with
G=I-BD'C_(al — A;)™"
A=A, —aBD'C_(al — A;)"L.
This completes the proof. O

Remember that, in the scalar case, if there exists a solution y(z) of
n

McMillan degree no more than %, then 6(y) = rankl’, where n is the
number of interpolating conditions. But, The following example shows

this is not true for rational matrix functions.

Exmaple 3.2. Let z, x;, y;, wj, u;, vj are given as in Example 3.1

1
fori=1,2,j=1,2. Let w3 =3, wy = —3, ug = uqg = v3 = vg = |:0:|
Then, W (z) in Example 3.1 is an interpolant satisfying the interpolation
condition (3.1)(3.2) with m = M = N = 2. By simple computation, we

get
00
e
Thus, rankl’ < 6(W) =2 =m < (2m + N)/2. This example shows W)
obtained in Theorem3.2 with 6(Wp) < m may have §(Wy) < m.

o O
(@R NI

According to the next collary, the equality holds if I' has full rank.

Corollary 3.5. If rankT = m, then Wy(z) in Theorem3.3 satisfies
d(Wo) = m. That is, Wy(z) has the minimal possible McMillan degree
among all the solutions.

Proof. Applying Theorem 3.1 to Wy(z) constructed in Theorem 3.3,
we see §(Wy) = m = rankT and, in this case, m is the minimal possible
McMillan degree among all the solutions. O
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Remarks Even for the very special case of matrix interpolation prob-
lem which we consider in (3.1)(3.2), it seems difficult to go beyond Theo-
rem 3.3 by this classical approach. In [2], the minimal possible McMillan
degree for the different type of matrix interpolation problem is found by
this approach under some additional highly restrictive hypothesis on the
structure of Lowner Matrix. It seems this approach is not very fruitful
for the matrix case. We need new perspective for the scalar interpola-
tion problem which can be extended to the matrix case more effectively.
This new perspective in understanding the scalar interpolation problem
will be addressed elsewhere.
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