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A NEW APPROACH ON THE CURVATURE

DEPENDENT ENERGY FOR ELASTIC CURVES IN A

LIE GROUP

Talat Korpinar and Ridvan Cem Demirkol∗

Abstract. Elastica is known as classical curve that is a solution
of variational problem, which minimize a thin inextensible wire’s
bending energy. Studies on elastica has been conducted in Eu-
clidean space firstly, then it has been extended to Riemannian man-
ifold by giving different characterizations. In this paper, we focus
on energy of the elastic curve in a Lie group. We attepmt to com-
pute its energy by using geometric description of the curvature and
the torsion of the trajectory of the elastic curve of the trajectory of
the moving particle in the Lie group. Finally, we also investigate
the relation between energy of the elastic curve and energy of the
same curve in Frenet vector fields in the Lie group.

1. Introduction

Corresponding theory for the functional of curvature-based energy is
considered to evolve in many research fields. Some prolific fields and
pioneering studies for this theory can be found in mathematical physics,
membrane chemistry, computer aided geometric design and geometric
modeling, shell engineering, biology and thin plate [1, 5, 12, 13, 16, 17] .
Wood [25] studied energy on the unit vector fields firstly. Gil-Medrano
[11] worked on relation between energy and volume of vector fields.
[6, 7] investigated on the energy of distributions and corrected energy
of distributions on Riemannian manifolds. Altin [2] computed energy of
Frenet vector fields for given nonlightlike curves. Körpınar [15] , discussed
energy of the timelike biharmonic particle in Heisenberg spacetime.

Materials having the feature of deformable structure such as cloth,
flexible metals, rubber, paper are the main subject and research field
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for the elasticity theory. However, elastica can be considered from a
various of different perspective that enlighten broad range of physical
and mathematical studies. Studies concerned about the elastica firstly
focus on the research of mechanical equilibrium, the study of variational
problems, and the solution of the elliptic integral.

One of the earliest approach on elastica yields prolific consequences
on equilibrium of moments, which constitute elemantary principle of
statics. Further, it is seen that elastica gives a natural solution for the
variotional problem, which deal with the minimizing of bending energy
of the elastic curve. Later, the equivalence between the motion of the
simple pendulum and fundamental differential equation of elastica were
investigated. Recently, numerical computation implemented on the elas-
tica is used to develop mathematical spline theory [18].

Potential elastic energy takes place when materials are stretched,
compressed or deformed in any way. That is, these deformed bodies
store potential energy when there exists a force on them. This potential
energy is exerted to bring the deformed body back to its neutral posi-
tion prior to deformation [24]. In this study, we attempt to carry this
concept into the elastic curves lying on Lie group R.

The innovation that Lie group brings to mathematics is that it has
three different structures of mathematical form. It enables setting a
connection between these different forms. Primarily, it has structure of
group. Further, the elements belonging to this group form a topological
space. Lastly, the elements also form an analytic manifold.

Lie groups play a key role not only in physical systems but also
in mathematical studies. It is highly significant in loop groups, gauge
groups, and Fourier integral’s groups operators that occurs as symme-
try groups and phase spaces. Lie groups are also useful in mechanics.
Since incomprehensible inviscid fluid motion and rigid body motion cor-
respond to geodesic flow of left (or right) invariant metric defined on the
Lie group [3, 10, 14, 19].

The manuscript of the paper as the following:

In this study, we approach the concept on the energy of the elastic
materials from a different point of view. We firstly define kinematics
of the particle lying on a Lie group. Then we characterize the energy
on each Frenet vector fields in Lie gorup. Moreover, we also determine
formula of the elastic curve in Lie gorup in terms of Frenet vector ele-
ments using variational method. Finally, we compute energy of elastic
curves in this space. The method we use for computing energy in this
study is that considering a vector field as a map from manifold M to
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the Riemannian manifold (TM, ρs) , where TM is tangent bundle of
a Riemannian manifold and ρs is a Sasaki metric induced from TM
naturally.

2. Kinematics of the Particle in a Lie Gorup R

Let Γ be a particle moving in a space R such that the precise location
of the particle is specified by Γ = Γ (t) , where t is a time parameter.
Changing time parameter describes the motion and trajectory of the
particle, ultimately. In most cases, this trajectory corresponds to a
particular curve in the space. It is convenient to remind that arc-length
parameter s is used to compute the distance traveled by a particle along
its trajectory. It is defined by

ds

dt
= ‖v‖ ,

where v = v (t) =dζ
dt is the velocity vector and dζ

dt 6= 0. In particle dynam-
ics, the arc-length parameter s is considered as a function of t. Thanks
to the arc-length, it is also determined Serret-Frenet frame, which allows
us determining characterization of the intrinsic geometrical features of
the regular curve. This coordinate system is constructed by three or-
thonormal vectors e(α), assuming the curve is sufficiently smooth at
each point. The index within the parenthesis is the tetrad index that
describes particular member of the tetrad. In particular, e(0) is the
unit tangent vector, e(1), e(2) is the unit normal and binormal vector of
the curve ζ, respectively. Orthonormality conditions are summarized by
e(α)e(β) = ηαβ, where ηαβ is Euclidean metric such that: diag(1, 1, 1) .
For nonnegative coefficients κ, τ, and vectors e(i) (i = 0, 1, 2) following

equations and properties are satisfied [8, 20].

De(0)

ds
= κe(1),

De(1)

ds
= −κe(0) + (τ − τR) e(2),(1)

De(2)

ds
= (τR − τ) e(1),

where Lie group R has the Levi-Civita connection D and

τR =
1

2
([e(0),e(1)], e(2)).
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Proposition 2.1 For a 3-dimensional Lie group R induced with a
bi-invariant metric we have following statements.

(i) τR = 0 if R is Abelian group.
(ii) τR = 1 if R is SU2.
(iii) τR = 1

2 if R is SO3 [8, 20] .

3. Energy on the Classical Bernoulli-Euler Elastica

3.1. Energy on the Unit Frenet Vector Fields

We first give the fundamental definitions and propositions, which are
used to compute the energy of the vector field.

Definition 3.1 Let (M,ρ) and (N,h) be two Riemannian manifolds,
then the energy of a differentiable map f : (M,ρ)→ (N,h) can be defined
as

(2) εnergy (f) =
1

2

∫
M

n∑
a=1

h (df (ea) , df (ea)) v,

where {ea} is a local basis of the tangent space and v is the canonical
volume form in M [2, 6].

Proposition 3.2 Let Q : T
(
T 1M

)
→ T 1M be the connection map.

Then following two conditions hold:
i) ω ◦Q = ω ◦ dω and ω ◦Q = ω ◦ ω̃, where ω̃ : T

(
T 1M

)
→ T 1M is

the tangent bundle projection;
ii) for % ∈ TxM and a section ξ : M → T 1M ; we have

(3) Q (dξ (%)) = D%ξ,

where ∇ is the Levi-Civita covariant derivative [6].

Definition 3.3 Let ς1, ς2 ∈ Tξ
(
T 1M

)
, then we define

(4) ρS (ς1, ς2) = ρ (dω (ς1) , dω (ς2)) + ρ (Q (ς1) , Q (ς2)) .

This yields a Riemannian metric on TM . As known ρS is called the
Sasaki metric that also makes the projection ω : T 1M →M a Riemann-
ian submersion.

Theorem 3.4 Let Γ be a moving particle in a Lie group R such that
it corresponds to a unit speed space curve ζ. Energy on the particle in
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tangent, normal, and binormal vector field is stated by

εnergye(0) =
1

2
(s+

∫ s

0
κ2ds),

εnergye(1) =
1

2
(s+

∫ s

0

(
κ2 + (τ − τR)2

)
ds),

εnergye(2) =
1

2
(s+

∫ s

0
(τ − τR)2 ds).

Proof. Here, we only prove energy of the particle in the tangent vector
field, since the rest of the proof can be completed similarly. From the
Eq. (2) and Eq. (3) we know that

εnergye(0) =
1

2

∫ s

0
ρS
(
de(0)(e(0)), de(0)(e(0))

)
ds.

Using Eq. (4) we have

ρS
(
de(0)(e(0)), de(0)(e(0))

)
= ρ(dω(e(0)(e(0))), dω(e(0)(e(0))))

+ρ(Q(e(0)(e(0))), Q(e(0)(e(0)))).

Since e(0) is a section, we get

d(ω) ◦ d(e(0)) = d(ω ◦ e(0)) =d(idC) = idTC .

We also know

Q(e(0)(e(0))) = De(0)e(0)=κe(1).

Thus, we find from the Eq. (1)

ρS
(
de(0)(e(0)), de(0)(e(0))

)
= ρ

(
e(0), e(0)

)
+ ρ(De(0)e(0), De(0)e(0))

= 1 + κ2.

So we can easily obtain

εnergye(0) =
1

2
(s+

∫ s

0
κ2ds).

This completes the proof.

3.2. Energy on the Elastic Curves in a Lie Group

The research on the curvature-based energies for space curves began
with Bernoulli and Euler’s studies on elastic thin beams and rods. This
type of energy is both essential in the mechanical context and also signif-
icant in computer vision, image processing and computer vision besides
mathematical and physical importance [4, 9, 21, 22].
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The elastica in Riemannian manifold has been formulated with the
help of variational problem. It is used an integral of the squared curva-
ture of the curve with a specific boundary conditions [23].

Let η : I ⊂ R→R be an immersed unit speed curve in a Lie group R,
then it has vector of a velocity V =ve(0) and squared geodesic curvature∥∥∥De(0)e(0)

∥∥∥ = κ2.

For the family of curves with Frenet characterization in the Eq. (1), we
have ηw (t) = g (w, t) . Thus, we are allowed to write

W (w, t) =
∂η

∂w
,

V (w, t) =
∂η

∂t
= v (w, t) e(0) (w, t) ,

where v = ds
dt is speed, V is velocity, W is an infinitesimal variation of

the curve. Also we need following formulas to calculate Euler equations

[W,V] =
W (v)

v
e(0)=ge(0), g= −

〈
De(0)W, e(0)

〉
,

W
(
κ2
)

= 2
〈
De(0)De(0)W

〉
+ 4gκ2 + 2

〈
R
(
W, e(0)

)
e(0),De(0)e(0)

〉
.

Another significant formula that we should take into account is the Rie-
mannian curvature R, which is given as the following.

R (X ,Y)Z = DXDYZ−DYDXZ−D[X ,Y]Z.

where X ,Y,Z are vector fields on any Riemannian manifold M .
Let η : [0, 1] → R be a curve of unit length. For any fixed constant

Ω, let

d

dw
FΩ (w) =

1

2

∫ L

0
k2 + Ωds =

1

2

∫ 1

0
(
∥∥∥De(0)e(0)

∥∥∥2
+ Ω)v (t) dt.

For a variation ηw and variational field W, we have

d

dw
FΩ (ηw) =

1

2

∫ 1

0
W
(
κ2
)
v +

(
κ2 + Ω

)
W (v) dt

=
1

2

∫ 1

0
W
(
κ2
)
−
(
κ2 + Ω

)
gds.

Based on this method it is obtained that elastic curves satisfy following
statement.

E =D3
e(0)

e(0)−De(0)

(
Υe(0)

)
+R(De(0)e(0),e(0))e(0),
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where g = −
〈
De(0)W, e(0)

〉
and Υ = Ω−3κ2

2 .

Let η be a unit speed curve lying on R that has the Frenet charac-
terization in (1),then we obtain for the elastic curve in a Lie group R
following statetment.

E =(κ′′ − κ (τR − τ)2 − κ3 −Υκ− κτ2
R)e(1)

+(2κ′ (τ − τR) + κ (τ − τR)′ +
κ

2
τ ′R)e(2).(5)

Theorem 3.5 Energy of the unit speed elastic curve in Lie group R
is stated by using Sasaki metric as follows.

εnergy (E) =
1

2
s+

1

2

∫ s

0
((−κκ′′ + κ2 (τR − τ)2 + κ4 + Υκ2 + κ2τ2

R)2

+(κ′′′ − 3κ′ (τR − τ)2 − 3κ (τR − τ) (τR − τ)′

−Υκ′ − κ′τ2
R − 2κτRτ

′
R +

κ

2
τ ′R (τR − τ))2

+((τ − τR) (3κ′′ − κτ2
R −Υκ− κ3 − κ (τR − τ)2)

+3κ′ (τ − τR)′ + κ (τ − τR)′′ +
κ′

2
τ ′R +

κ

2
τ ′′R)2)ds.

Proof. From the Eq. (2) and Eq. (3) we know

εnergy (E) =
1

2

∫ s

0
ρS
(
dE(e(0)), dE(e(0))

)
ds.

Using Eq. (4) we have

ρS
(
dE(e(0)), dE(e(0))

)
= ρ(dω(E(e(0))), dω(E(e(0))))

+ρ(Q(E(e(0))), Q(E(e(0)))).

Since E is a section, we get

d(ω) ◦ d(E) = d(ω ◦E) =d(idC) = idTC .

Then we have by using Eq. (5)

Q(E(e(0))) = De(0)E =(−κκ′′ + κ2 (τR − τ)2 + κ4 + Υκ2 + κ2τ2
R)e(0)

+ (κ′′′ − 3κ′ (τR − τ)2 − 3κ (τR − τ) (τR − τ)′ −Υκ′ − κ′τ2
R

− 2κτRτ
′
R +

κ

2
τ ′R (τR − τ))e(1)

+ ((τ − τR) (3κ′′ − κτ2
R −Υκ− κ3 − κ (τR − τ)2)

+ 3κ′ (τ − τR)′ + κ (τ − τR)′′ +
κ′

2
τ ′R +

κ

2
τ ′′R)e(2).
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Thus, we find that

ρS
(
dE(e(0)), dE(e(0))

)
= ρ

(
e(0), e(0)

)
+ ρ(De(0)E,De(0)E)

= 1 + (−κκ′′ + κ2 (τR − τ)2 + κ4 + Υκ2 + κ2τ2
R)2

+(κ′′′ − 3κ′ (τR − τ)2 − 3κ (τR − τ) (τR − τ)′

−Υκ′ − κ′τ2
R − 2κτRτ

′
R +

κ

2
τ ′R (τR − τ))2

+((τ − τR) (3κ′′ − κτ2
R −Υκ− κ3 − κ (τR − τ)2)

+3κ′ (τ − τR)′ + κ (τ − τR)′′ +
κ′

2
τ ′R +

κ

2
τ ′′R)2.

So we can easily compute the energy of the elastic curve, if we plug
obtained data.

Remark 3.6 Let η be the unit speed elastic curve in a Lie group
R. Then we have following relation between energy of the elastic curve
in Frenet vector fields and energy on the same curve in E is given as
follows, respectively.

εnergye(0) − εnergy (E) =
1

2

∫ s

0
(κ2 − (−κκ′′ + κ2 (τR − τ)2 + κ4

+Υκ2 + κ2τ2
R)2 − (κ′′′ − 3κ′ (τR − τ)2 − 3κ (τR − τ) (τR − τ)′

−Υκ′ − κ′τ2
R − 2κτRτ

′
R +

κ

2
τ ′R (τR − τ))2

−((τ − τR) (3κ′′ − κτ2
R −Υκ− κ3 − κ (τR − τ)2)

+3κ′ (τ − τR)′ + κ (τ − τR)′′ +
κ′

2
τ ′R +

κ

2
τ ′′R)2)ds,

εnergye(1) − εnergy (E) =
1

2

∫ s

0
(κ2 + (τ − τR)2 − (−κκ′′ + κ2 (τR − τ)2 + κ4

+Υκ2 + κ2τ2
R)2 − (κ′′′ − 3κ′ (τR − τ)2 − 3κ (τR − τ) (τR − τ)′

−Υκ′ − κ′τ2
R − 2κτRτ

′
R +

κ

2
τ ′R (τR − τ))2

−((τ − τR) (3κ′′ − κτ2
R −Υκ− κ3 − κ (τR − τ)2)

+3κ′ (τ − τR)′ + κ (τ − τR)′′ +
κ′

2
τ ′R +

κ

2
τ ′′R)2)ds,
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εnergye(2) − εnergy (E) =
1

2

∫ s

0
((τ − τR)2 − (−κκ′′ + κ2 (τR − τ)2 + κ4

+Υκ2 + κ2τ2
R)2 − (κ′′′ − 3κ′ (τR − τ)2 − 3κ (τR − τ) (τR − τ)′

−Υκ′ − κ′τ2
R − 2κτRτ

′
R +

κ

2
τ ′R (τR − τ))2

−((τ − τR) (3κ′′ − κτ2
R −Υκ− κ3 − κ (τR − τ)2)

+3κ′ (τ − τR)′ + κ (τ − τR)′′ +
κ′

2
τ ′R +

κ

2
τ ′′R)2)ds.

Proof. It is obvious from Theorem 3.4 and Theorem 3.5.

Corollary 3.7 Let assume that η lies on the 3-dimensional Lie group
R such that R is Abelian group. Then for the energy of the elastic curve,
we have

εnergy (E) =
1

2
s+

1

2

∫ s

0
((−κκ′′ + κ2τ2 + κ4 + Υκ2 + κ2)2

+(κ′′′ − 3κ′τ2 − 3κττ ′ −Υκ′ − κ′ − 2κ+
κ

2
)2

+(τ(3κ′′ − κ−Υκ− κ3 − κτ2) + 3κ′τ ′ + κτ ′′ +
κ′

2
+
κ

2
)2)ds.

Corollary 3.8 Let assume that η lies on the 3-dimensional Lie group
R such that R is SU2. Then for the energy of the elastic curve, we have

εnergy (E) =
1

2
s+

1

2

∫ s

0
((−κκ′′ + κ2 (1− τ)2 + κ4 + Υκ2 + κ2)2

+(κ′′′ − 3κ′ (1− τ)2 − 3κ (1− τ) (1− τ)′ −Υκ′ − κ′)2

+((τ − 1) (3κ′′ − κ−Υκ− κ3 − κ (1− τ)2) + 3κ′ (τ − 1)′ + κ (τ − 1)′′)2)ds.

Corollary 3.9 Let assume that η lies on the 3-dimensional Lie group
R such that R is SO3. Then for the energy of the elastic curve, we have

εnergy (E) =
1

2
s+

1

2

∫ s

0
((−κκ′′ + κ2(

1

2
− τ)2 + κ4 + Υκ2 +

κ2

4
)2

+(κ′′′ − 3κ′(
1

2
− τ)2 − 3κ(

1

2
− τ)(

1

2
− τ)′ −Υκ′ − κ′

4
)2

+((τ − 1

2
)(3κ′′ − κ

4
−Υκ− κ3 − κ(

1

2
− τ)2) + 3κ′(τ − 1

2
)′ + κ(τ − 1

2
)′′)2)ds.
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