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TRAVELING WAVE SOLUTIONS FOR A SHALLOW

WATER MODEL

Soyeun Jung

Abstract. In this note, we seek traveling wave solutions of a shal-
low water model in a one dimensional space by a simple but rigorous
calculation. From the profile equation of traveling wave solutions,
we need to investigate the phase portrait of a one dimensional or-
dinary differential equation ũ′ = F (ũ) connecting two end states of
the traveling wave solution.

1. Introduction

We consider the following shallow water model in a one dimensional
space:

(1.1)

{
ht + (hu)x = 0,

(hu)t + (hu2)x +
g cosα

2
(h2)x = −cfu2 + (g sinα)h,

where x ∈ R is the direction of flow, t is time, h the height of the water
layer and u its horizontal velocity. Moreover, g > 0 is the acceleration
of gravity, α ∈ (0, π/2) is the constant slope angle, and cf > 0 is the
frictional coefficient. The first and second equations of (1.1) are the
two conservation equations for h and u, in particular, they represent the
conservation laws of mass and momentum, respectively. See [S, W] for
the detailed derivation of a shallow water model.

The propagation of waves in shallow water has been studied in [PS, M]
by using a linear perturbation method. Yong and Zumbrun investigated
the existence of traveling wave solutions (relaxation shock profiles) for
general strict hyperbolic conservation laws with relaxation under some
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structural assumption (see [YZ] and references cited therein). The exis-
tence and the time-asymptotic behavior of the outflow boundary layer
solutions to (1.1) have been concerned in [KST].

Here, we investigate the existence of the traveling wave solution to
(1.1). More precisely, we seek a traveling wave solution to (1.1) of the
form

(1.2) (h, u)(x, t) = (h̃, ũ)(x− st) with lim
ξ→±∞

(h̃, ũ)(ξ) = (h±, u±),

where ξ = x − st, 0 < h+ < h−, and 0 < u+ < u−. Here, s ∈ R is the
wave speed of the profile (h̃, ũ).

Applying the first equation (the conservation of mass) of (1.1) to the
second equation (the conservation of momentum), (1.1) reduces to

(1.3)

ht + (hu)x = 0,

ut + (12u
2)x + g cosαhx = −cf

u2

h
+ g sinα.

As a starting point, we first consider the profile equations of (h̃, ũ)

satisfying (1.3). By inserting (h, u)(x, t) = (h̃, ũ)(x − st) into (1.3), we
obtain the following first order ODEs (profile equations) :

(1.4) −sh̃′ + (h̃ũ)′ = 0,

(1.5) −sũ′ + (
1

2
ũ2)′ + g cosαh̃′ = −cf

ũ2

h̃
+ g sinα,

where ′ represents differentiation in ξ ∈ (−∞,∞). The purpose of this

paper is to show the existence of a trajectory (h̃, ũ) connecting (h−, u−)
on the left to (h+, u+) on the right.

1.1. Main result

We now state the main theorem in the present note.

Theorem 1.1. For given constants cf > 0, 0 < α <
π

2
, and g > 0,

suppose that the end states u− and u+ satisfy 0 < u+ < u− and

(1.6) u4− < cf cotα(u+ + u−)2u2+.

Then there exists a traveling wave solution to (1.1) of the form (1.2)
with

(1.7) h+ =
cfu

2
+

g sinα
, h− =

cfu
2
−

g sinα
, and s = u− +

u2+
u+ + u−

.
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Remark 1.2. The strategy to prove Theorem 1.1 is as follows. We
first solve the profile equation (1.4) for h̃ by integrating (1.4) from −∞
to x; and then by plugging h̃ into (1.5), the second profile equation (1.5)
can be written as ũ′ = F (ũ). Finally, we prove that there is a trajectory
in the phase plane of ũ′ = F (ũ) connecting the end states u+ and u−
with 0 < u+ < u−.

Remark 1.3. The relations between the end states h± and u± in
(1.7) are trivially derived by solving

−cf
u2

h
+ g sinα = 0

in the second equation of (1.3) because we consider (h±, u±) as the
constant solutions (equilibrium states) of (1.3). Thus, by (1.7), the
condition 0 < u+ < u− implies that 0 < h+ < h−.

Remark 1.4. Since the cotangent function is decreasing on (0, π/2),
Theorem 1.1 says that a larger slope angle α requires a smaller gap
u− − u+ of two end states for the existence of traveling wave solutions
of the form (1.2). Moreover, the wave speed s must satisfy s = u− +
u2+

u++u−
> u− > u+ > 0.

2. Solving the profile equations

By integrating (1.4) from −∞ to x, we obtain

(2.1) h̃ =
u− − s
ũ− s

h−

which leads to, by the first equation of (1.4),

(2.2) h̃′ =
ũ′

s− ũ
h̃ = −h−(u− − s)ũ′

(ũ− s)2
.

By plugging (2.1) and (2.2) into (1.5) and by solving (1.5) for ũ′, we
obtain a single ordinary differential equation of the form

(2.3) ũ′ = F (ũ) :=
−cf ũ2(ũ− s)3 + g sinαh−(u− − s)(ũ− s)2

h−(u− − s)(ũ− s)3 − g cosαh2−(u− − s)2
.

In order to solve the speed s, we again integrate (1.4) from −∞ to ∞;
so then

(2.4) −s(h+ − h−) + (h+u+ − h−u−) = 0.

We now prove that u+ and u− are fixed points of the ODE (2.3).



652 Soyeun Jung

Proposition 2.1. For given cf > 0, 0 < α <
π

2
, and g > 0, assume

u± (0 < u+ < u−) and h± satisfy

(2.5) cfu
2
+ − g sinαh+ = 0 and cfu

2
− − g sinαh− = 0,

(2.6) (u+ − s)2 − g cosαh+ 6= 0 and (u− − s)2 − g cosαh− 6= 0.

Then u+ and u− are fixed points of (2.3), that is, F (u±) = 0. Moreover,
there is no fixed point between u+ and u−.

Proof. We first notice that, by (2.4) and (2.5),

s = u− + h+
u+ − u−
h+ − h−

= u− +
u2+

u+ + u−
> u− > u+ > 0;

so then u± − s is nonzero. It is trivial that F (u−) = 0 if cfu
2
− −

g sinαh− = 0 and (u− − s)2 − g cosαh− 6= 0.
By (2.4), we have

(2.7) h−(u− − s) = h+(u+ − s);

which leads to F (ũ) =
−cf ũ2(ũ− s)3 + g sinαh+(u+ − s)(ũ− s)2

h+(u+ − s)(ũ− s)3 − g cosαh2+(u+ − s)2
. Thus,

F (u+) = 0 if cfu
2
+ − g sinαh+ = 0 and (u+ − s)2 − g cosαh+ 6= 0.

Moreover, by directly solving F (ũ) = 0, there are three more fixed
points of (2.3) :

ũ = s and ũ =
1

2

(
s− u− ±

√
(s+ 3u−)(s− u−)

)
.

However, since s = u− +
u2+

u+ + u−
, simple calculations give us

1

2

(
s− u− −

√
(s+ 3u−)(s− u−)

)
<

1

2

(
s− u− +

√
(s+ 3u−)(s− u−)

)
= u+ < u− < s

which implies that there is no fixed point between u+ and u−.

3. Proof of the main theorem

We now prove Theorem 1.1 by considering the phase plane of ũ′ =
F (ũ). Since we already proved in Proposition 2.1, u+ and u− are the
only zeros of F (ũ) on a closed interval [u+, u−], we need to prove that
F (ũ) < 0 on (u+, u−) so that the flow is to the left for any initial data
u0 ∈ (u+, u−).
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Proof of Theorem 1.1 . In order to prove F (ũ) < 0 for all ũ ∈
(u+, u−), it is enough to prove that F ′(u+) < 0 < F ′(u−) in the phase
space; so that u+ is a stable fixed point and u− is an unstable fixed

point. By setting F (ũ) =
V (ũ)

W (ũ)
and by the fact V (u±) = 0,

F ′(u±) =
V ′(u±)W (u±)

W (u±)2

=
(u± − s)4cfu±h±(2s− 3u±){(u± − s)2 − g cosαh±}

W (u±)2
.

Since 0 < u+ < u− and s =
u2+ + u+u− + u2−

u+ + u−
,

2s− 3u+ =
(u− − u+)(2u− + u+)

u+ + u−
> 0

and

2s− 3u− =
(u+ − u−)(2u+ + u−)

u+ + u−
< 0;

so F ′(u+) < 0 < F ′(u−) if and only if

(3.1) (u+ − s)2 − g cosαh+ < 0 and (u− − s)2 − g cosαh− < 0.

However, since (u− − s)2 < (u+ − s)2 and g cosαh+ < g cosαh−, the
condition

(3.2) (u+ − s)2 < g cosαh+

is enough for F ′(u+) < 0 < F ′(u−). By plugging h+ =
cfu

2
+

g sinα
and

s = u+ +
u2−

u+ + u−
into (3.2), we obtain the condition

u4− < cf cotα(u+ + u−)2u2+.

Moreover, this condition definitely replaces (2.6) in Proposition 2.1. We
just proved that under the condition (1.6), there is a trajectory con-
necting u+ and u− such that the flow is to u+ as x → ∞ and to u−
as x → −∞ starting from an arbitrary initial data u0 ∈ (u+, u−). By

inserting ũ into (2.1), we also obtain h̃ connecting h+ and h− with

h+ < h̃ < h−. This completes the proof.
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