Honam Mathematical J. 39 (2017), No. 4, pp. 655–663 https://doi.org/10.5831/HMJ.2017.39.4.655

A STUDY ON κ -AP, κ -WAP SPACES AND THEIR RELATED SPACES

Myung Hyun Cho^{*} and Junhui Kim[†]

Abstract. In this paper we define AP_c and AP_{cc} spaces which are stronger than the property of approximation by points(AP). We investigate operations on their subspaces and study function theorems on AP_c and AP_{cc} spaces. Using those results, we prove that every continuous image of a countably compact Hausdorff space with AP is AP. Finally, we prove a theorem that every compact κ -WAP space is κ -pseudoradial, and prove a theorem that the product of a compact κ -radial space and a compact κ -WAP space is a κ -WAP space.

1. Introduction

Throughout this paper, all spaces are assumed as Hausdorff, the cardinality of any set X is denoted by $|X|$. \aleph_0 is the first countably infinite cardinal and \aleph_1 is the first uncountable cardinal. Undefined notions and terminologies can be found in [4].

Approximation by points (AP) and weak approximation by points (WAP) were introduced by A. Pultr and A. Tozzi in 1993 ([7]) and studied by A. Bella $([1])$ and P. Simon $([8])$ etc.

A space X is said to have the property of *Approximation by Points* $([7])$, for short, AP, if for every non-closed subset A of X and for every point $x \in \overline{A} \backslash A$, there exists a subset F of A such that $\overline{F} = F \cup \{x\}$. A space X is said to have the property of Weak Approximation by Points, for short, WAP , if for every non-closed subset A of X , there exist a point $x \in \overline{A} \backslash A$ and a subset F of A such that $\overline{F} = F \cup \{x\}$. Such a

Received October 17, 2017. Accepted November 24, 2017.

²⁰¹⁰ AMS subject classification. 54A20, 54C05, 54D55.

Kew words and phrases. Fréchet-Urysohn, AP, AP_c , AP_{cc} , κ -AP, WAP, κ -WAP, radial, κ-radial, pseudo-radial, κ-pseudo-radial.

[?] The first author's research was supported by Wonkwang University Research Grant, 2017.

[†] Corresponding author

set F is said to be *almost closed*. In a space with a unique non-isolated point, any non-closed set is almost closed. So any space with a unique non-isolated point is AP.

W. Hong ([5]) introduced many properties by generalizing AP and WAP. Specially, he defined approximation by countable points (ACP) and countably approximation by points, for short, countably AP.

Here, we state the well-known classical definitions concerned with AP and WAP. A space X is called *compact* (resp. *countably compact*) if every (resp. countable) open cover X has a finite subcover. A space X is called Fréchet-Urysohn if for any subset A of X and any $x \in \overline{A}$ there is a sequence S in A which converges to x. A space X is called sequential if for any non-closed subset A of X there is a sequence S in A which converges to some $x \in \overline{A} \backslash A$. We say that a space X has *countable* tightness, i.e., $t(X) \leq \aleph_0$, if whenever $A \subseteq X$ and $x \in \overline{A}$, there exists a countable subset B of A such that $x \in \overline{B}$.

A. Bella and J. Gerlits ([2]) studied radiality, pseudoradiality, and semiradiality, which are some kind of approximations by points defined in view of convergence of transfinite sequences. The definitions are as follows. A space X is said to be *radial* if for every non-closed subset A of X and for every point $x \in \overline{A} \setminus A$, there exists a transfinite sequence which converges to x. A space X is said to be *pseudoradial* if for every non-closed subset A of X, there exist a point $x \in \overline{A} \setminus A$ and a transfinite sequence which converges to x . We say that a subset A of a space X is κ -closed whenever $B \subseteq A$ and $|B| \leq \kappa$ imply $B \subseteq A$. A space X is said to be *semiradial* if for every non- κ -closed subset A of X, there exists a transfinite sequence S in A which converges to a point outside A and satisfies $|S| \leq \kappa$.

The relations Fréchet-Urysohn \rightarrow radial \rightarrow semiradial \rightarrow pseudoradial always hold. But in general the arrows cannot be reversed even for compact spaces. For more details on pseudoradial and related spaces, see [6]. AP and WAP spaces are closely related to radial and pseudoradial spaces. Likewise, it will be turned out that κ -AP and κ -WAP spaces are closely related to κ -radial and κ -pseudoradial spaces.

This paper is organized as follows: This section is to provide some notions and definitions which we will need afterwards. In section 2, we define AP_c and AP_{cc} spaces which are stronger than the property of approximation by points (AP). We investigate operations on their subspaces and we also study function theorems on AP_c and AP_{cc} spaces. Using those results, we prove that every continuous image of a countably compact Hausdorff space with AP is AP.

Section 3 is devoted to studying κ -radiality and κ -pseudoradiality which streng-then radiality and pseudoradiality. We modify a theorem by A. Bella ([1]) that every compact WAP space is pseudoradial to get a theorem [Theorem 3.4] that every compact κ -WAP space is κ pseudoradial. We also modify a theorem by A. Bella (1) that the product of a compact semiradial space and a compact WAP space is a WAP space to get a theorem [Theorem 3.9] that the product of a compact κ -radial space and a compact κ -WAP space is a κ -WAP space.

2. AP_c and AP_{cc} Spaces

A space X is said to be κ -AP ([3]) if for every non-closed subset A of X and for every point $x \in \overline{A} \backslash A$, there exists a subset F of A such that $F = F \cup \{x\}$ and $|F| \leq \kappa$. Such a set F is called κ -almost closed.

A space X is said to be κ -WAP ([3]) if for every non-closed subset A of X, there exist a point $x \in \overline{A} \backslash A$ and a subset F of A such that $\overline{F} = F \cup \{x\}$ and $|F| \leq \kappa$.

We say that a subset A of a space X is κ -AP-closed if for every $F \subseteq A$ with $|F| \leq \kappa$ the relation $|\overline{F} \backslash A| \neq 1$ holds. It is clear that X is a κ -WAP space if and only if every κ -AP-closed subset of X is closed. Recall that a subset A of a space X is κ -closed if whenever $B \subseteq A$ and $|B| \leq \kappa$ imply $\overline{B} \subseteq A$.

Definition 2.1. A space X is said to be AP_c provided that for any non-closed subset A of X and $x \in \overline{A} \setminus A$, there exists a subset F of A such that $\overline{F} = F \cup \{x\}$ and \overline{F} is compact.

Definition 2.2. A space X is said to be AP_{cc} provided that for any non-closed subset A of X and $x \in \overline{A} \setminus A$, there exists a subset F of A such that $\overline{F} = F \cup \{x\}$ and \overline{F} is countably compact.

Theorem 2.3. The following statements hold:

- (1) every subspace of an AP_c space is an AP_c space;
- (2) every subspace of an AP_{cc} space is an AP_{cc} space;
- (3) every Fréchet-Urysohn space is an AP_c space;
- (4) every AP_c space is an AP_{cc} space; and
- (5) every AP_{cc} space is an AP space.

Proof. (1) Let Y be a subspace of an AP_c space X and let A be a non-closed subset of Y. If $x \in \overline{A}^Y \setminus A$, then there exists a subset F of A such that $\overline{F} = F \cup \{x\}$ and \overline{F} is compact since X is AP_c. Then it follows from $x \in Y$ that $\overline{F}^Y = \overline{F}$. Therefore \overline{F}^Y is compact.

(2) It can be proved similarly.

(3) Let A be a non-closed subset of a Fréchet-Urysohn space X and let $x \in \overline{A} \backslash A$. Since X is Fréchet-Urysohn, there exists a sequence S in A which converges to the point x. Then the subspace $S \cup \{x\}$ is compact. Therefore the space X is AP_c .

(4) and (5) They are immediate from the definitions.

 \Box

Theorem 2.4. The following are equivalent for a Hausdorff space $X:$

 (1) X is Fréchet-Urysohn;

 (2) X is AP_c ; and

(3) X is AP_{cc} .

Proof. It is enough to show the implication $(3) \Rightarrow (1)$ to complete the proof.

Without loss of generality, we may assume that $x \in \overline{A} \setminus A$. Since X is AP_{cc}, there exists a subset F of A such that $\overline{F} = F \cup \{x\}$ and \overline{F} is countably compact. Since every subspace of an AP space is AP [10, Proposition 2.1 (1)], the subspace \overline{F} is AP. Since every countably compact AP space is Fréchet-Urysohn [10, Theorem 2.2], \overline{F} is Fréchet-Urysohn. So there exists a sequence S in F (hence in A) which converges to x. Therefore X is Fréchet-Urysohn. \Box

When X is a sequential Hausdorff space, the following statements are equivalent ([5], Corollary 2.4):

X is Fréchet-Urysohn \Leftrightarrow X is ACP \Leftrightarrow X is countably AP. Therefore we have the following corollary.

Corollary 2.5. Let X be a sequential Hausdorff space. Then the following statements are equivalent:

- (1) X is Fréchet-Urysohn;
- (2) X is AP_c ;
- (3) X is AP_{cc} ;
- (4) X is ACP; and
- (5) X is countably AP.

V. V. Tkachuk and I. V. Yaschenko ([10]) have proved that every countably compact Hausdorff space with AP is Fréchet-Urysohn. So we have the following corollary.

Corollary 2.6. Every countably compact Hausdorff space with AP is AP_c and AP_{cc} .

The following is an improvement of the result in [10] that every closed continuous image of an AP space is AP.

Theorem 2.7. The following statements hold:

- (1) every continuous image of an AP_c space is AP_c ; and
- (2) every continuous image of an AP_{cc} space is AP_{cc} .

Proof. (1) Suppose that X is an AP_c space and $f: X \rightarrow Y$ is a continuous onto map. Let $A \subseteq Y$ and $y \in \overline{A} \setminus A$. Take $B = f^{-1}(A)$. Since $f^{-1}(y) \cap \overline{B} \neq \emptyset$, B is a non-closed subset of X. Hence for some $x \in f^{-1}(y)$, there exists a subset C of B such that $\overline{C} = C \cup \{x\}$ and \overline{C} is compact. Let $F = f(C)$. Then $\overline{F} = F \cup \{y\}$. Furthermore, \overline{F} is compact because $\overline{F} = f(\overline{C})$ and f is continuous.

(2) can be proved similarly.

 \Box

Remark 2.8. Notice that there exists an AP space whose continuous image is not AP. The space $X = \omega_1 + 1$ with interval topology is not AP, and it is a continuous image of a discrete space D of cardinality ω_1 which is $AP([9])$.

However we have the following.

Theorem 2.9. Every continuous image of a countably compact Hausdorff space with AP is AP.

Proof. Let X be a countably compact Hausdorff space with AP, and let $f: X \to Y$ be a continuous map from the space X onto a space Y. Then, by Corollary 2.6, X is AP_c . Theorem 2.7 implies that Y is AP_c , and hence it is AP. \Box

3. κ -Radial and κ -Pseudoradial spaces

A space X is called κ -radial ([3]) if for every non-closed subset A of X and for every point $p \in \overline{A} \setminus A$, there exists a transfinite sequence ${x_{\alpha} \in A : \alpha < \kappa}$ which converges to p.

A space X is called κ -pseudoradial ([3]) if for every non-closed subset A of X, there exist a point $p \in \overline{A} \setminus A$ and a transfinite sequence $\{x_{\alpha} \in A\}$ $A: \alpha < \kappa$ which converges to p.

By definitions, we have the following diagram.

660 Myung Hyun Cho? and Junhui Kim†

We introduce a definition which is an extension of sequential compactness: a space X is called κ -sequentially compact if every transfinite sequence has a convergent transfinite subsequence with length $\leq \kappa$.

Theorem 3.1 ([1]). Every compact WAP space is pseudoradial.

Theorem 3.2 ([1]). Every compact AP space is radial.

Theorem 3.3 ([3]). Every countably compact κ -WAP space is κ sequentially compact.

We have two improvements of the above theorems as follows:

Theorem 3.4. Every compact κ -WAP space is κ -pseudoradial.

Proof. Let X be a compact κ -WAP space and let A be a non-closed subset of X. Since X is κ -WAP, there exist $B \subseteq A$ and $x \in X \backslash A$ such that $\overline{B}\setminus A = \{x\}$ and $|B| \leq \kappa$. Select a minimal family $\{U_{\xi} : \xi \in$ κ_0 }($\kappa_0 \leq \kappa$) of open subsets in the subspace \overline{B} satisfying $\bigcap_{\xi \in \kappa_0} \overline{U}_{\xi} =$ { x }. By the minimality, $\bigcap_{\nu \in \xi} \overline{U}_{\nu} \setminus \{x\} \neq \emptyset$ for every $\xi \in \kappa_0$. Choose a point $x_{\xi} \in \bigcap_{\nu \in \xi} \overline{U}_{\nu} \setminus \{x\}.$ Since \overline{B} is compact, it is easy to check that the well-ordered net $\langle x_{\xi} : \xi \in \kappa_0 \rangle$ so obtained converges to x. By construction, the set $F = \{x_{\xi} : \xi \in \kappa_0\}$ is a subset of A. So the proof is complete. \Box

Theorem 3.5. Every compact κ -AP space is κ -radial.

Proof. Let X be a compact κ -AP space. Let A be a non-closed subset of X and $x \in \overline{A} \backslash A$. Then there exists $B \subseteq A$ such that $\overline{B} \backslash A = \{x\}$ and $|B| \leq \kappa$. With a similar argument in Theorem 3.4, there exists a well-ordered net $\langle x_{\xi} : \xi \in \kappa_0 \rangle$, $\kappa_0 \leq \kappa$, of A which converges to x. Hence X is κ -radial. \Box

Theorem 3.6 ([1]). Every compact scattered AP space is Fréchet-Urysohn.

Corollary 3.7. For every infinite cardinal κ , every compact scattered κ -AP space is \aleph_0 -radial.

Proof. It follows from Theorem 3.6.

Theorem 3.8 ([1]). The product of compact semiradial space and compact WAP space is a WAP space.

Finally, we prove the following theorem.

Theorem 3.9. The product of compact κ -radial space and compact κ -WAP space is a κ -WAP space.

Proof. Let X be a compact κ -radial space and let Y be a compact κ -WAP space. By way of contradiction, assume that $X \times Y$ is not κ -WAP. Then there exists a non-closed subset A of $X \times Y$ such that for every $(x, y) \in \overline{A} \backslash A$ and for every subset F of A with $|F| \leq \kappa, \overline{F} \neq F \cup \{(x, y)\},\$ i.e., there is a κ -AP-closed set $A \subseteq X \times Y$ which is not closed. Let κ be the minimal cardinal such that the set A is not κ -closed and choose a set $B \subseteq A$ satisfying $|B| = \kappa$ and $\overline{B} \setminus A \neq \emptyset$. Select a point $(x, y) \in \overline{B} \setminus A$. Since $\{x\} \times Y$ is κ -WAP and $A \cap (\{x\} \times Y)$ is κ -AP-closed (and hence it is closed in $\{x\} \times Y$, there exists a closed neighbourhood V of (x, y) in $X\times Y$ such that $V\cap [A\cap (\{x\}\times Y)] = \emptyset$ (because of $(x, y) \notin A\cap (\{x\}\times Y)$). Let $\pi_X : X \times Y \to X$ be a projection map on X. Since $\pi_X^{-1}(x) =$ ${x} \times Y$ and $(x, y) \in V$, $V \cap \pi_X^{-1}(x) \neq \emptyset$. Hence $A \cap (\{x\} \times Y) = \emptyset$, i.e., $A \cap \pi_X^{-1}(x) = \emptyset$. Thus $\pi_X^{-1}(x) \nsubseteq A$ and so $x \notin \pi_X(A)$. Since $(x, y) \in \overline{B} \backslash A$, it follows from the continuity of π_X that $x \in \overline{\pi_X(B)}$. Hence $x \in \overline{\pi_X(B)} \setminus \pi_X(A)$. Also since $|B| = \kappa, |\pi_X(B)| \leq |B| = \kappa$. Hence $\pi_X(A)$ is not κ -closed.

Now since X is κ -radial, there exists a transfinite sequence $\{x_\alpha : \alpha \in \mathbb{R}^n\}$ κ in $\pi_X(A)$ which converges to a point $\hat{x} \in X \setminus \pi_X(A)$. For each $\alpha \in \kappa$, choose $y_{\alpha} \in Y$ such that $(x_{\alpha}, y_{\alpha}) \in A$. Since Y is compact and the set $\{y_\alpha : \alpha \in \kappa\}$ is infinite, there exists a complete accumulation point p of $\{y_\alpha : \alpha \in \kappa\}$ in Y. Since the point $(\hat{x}, p) \notin A$, we get $p \notin \pi_Y(A)$ as before. For any $\alpha \in \kappa$, we denote $C_{\alpha} = \{y_{\beta} : \beta \in \alpha\}$ and put $C = \bigcup_{\alpha \in \kappa} C_{\alpha}$. Since $\pi_Y(A)$ is κ -closed, $\{y_\beta : \beta \in \alpha\} \subseteq \pi_Y(A)$, and $\left|\{y_\beta : \beta \in \alpha\}\right| < \kappa$, we have $\overline{\{y_\beta : \beta \in \alpha\}} \subseteq \pi_Y(A)$, i.e., $C_\alpha \subseteq \pi_Y(A)$ for every $\alpha \in \kappa$. Hence $C = \bigcup_{\alpha \in \kappa} C_{\alpha} \subseteq \pi_Y(A)$. Moreover, since $p \in \overline{C} \setminus \pi_Y(A)$, $p \in \overline{C} \setminus C$ and thus C is not closed in Y. Hence by κ -WAP of Y, there exist a point $\hat{y} \in C \backslash C$ and a subset D of C such that $D = D \cup {\hat{y}}$ and $|D| \leq \kappa$. Clearly, we can write $\overline{D} = \{\hat{y}\} \cup (\bigcup_{\alpha \in \kappa} \overline{D} \cap C_{\alpha})$. Since $\hat{y} \notin C$, $\hat{y} \notin C_{\alpha}$ for every $\alpha \in \kappa$. So for each $\alpha \in \kappa$, $\hat{y} \notin \overline{D} \cap C_{\alpha}$ and $\overline{D} \cap C_{\alpha}$ is closed in Y. Hence for each $\alpha \in \kappa$, choose a closed neighborhood U_{α} of \hat{y} in the subspace \overline{D} satisfying $U_{\alpha} \cap \overline{D} \cap C_{\alpha} = \emptyset$ and let $V_{\alpha} = \bigcap_{\beta \in \alpha} U_{\beta}$. Since the subspace \overline{D} is compact and $\overline{D}\backslash\{y\}$ is *κ*-closed, it follows that every

 \Box

662 Myung Hyun Cho? and Junhui Kim†

 $V_{\alpha}\setminus\{\hat{y}\}\$ is not empty. (If $V_{\alpha}\setminus\{\hat{y}\}=\emptyset$ for some $\alpha \in \kappa$, then $V_{\alpha}=\{\hat{y}\}\$ and so $\bigcap_{\beta \in \alpha} U_{\beta} = \{\hat{y}\}\$. By κ -closedness of $\overline{D}\setminus \{y\}$, $\bigcap_{\beta \in \alpha} U_{\beta} \setminus \{\hat{y}\}\neq \emptyset$ for every $\beta \in \alpha$. Picking a point $y_{\beta} \in \bigcap_{\beta \in \alpha} U_{\beta} \setminus {\hat{y}}$ and taking into account the compactness of \overline{D} , it is easy to check that the transfinite sequence so obtained converges to \hat{y} . Hence $\hat{y} \in \overline{D} \subseteq C$. This is a contradiction.) Now picking a point $y'_{\alpha} \in V_{\alpha} \setminus {\hat{y}}$ for every $\alpha \in \kappa$, we obtain a transfinite sequence converging to \hat{y} . Next, fix a function $f: \kappa \to \kappa$ such that $y'_\alpha \in \overline{\{y_\beta : \alpha \in \beta \in f(\alpha)\}}$ for any $\alpha \in \kappa$. Using the fact that A is $\lt \kappa$ -closed, we can select a point $x'_\alpha \in \overline{\{x_\beta : \alpha \in \beta \in f(\alpha)\}}$ in such way that $(x', y') \in A$ for any $\alpha \in \kappa$. To finish, observe that the transfinite sequence $F = \{(x'_\alpha, y'_\alpha) : \alpha \in \kappa\}$ must converges to the point $(\hat{x}, \hat{y}) \notin A$. Every point in the closure of F and distinct from (\hat{x}, \hat{y}) is actually in the closure of an initial segment of F and hence in A . Thus we have $\overline{F}\setminus A = (\hat{x}, \hat{y})$ and $|F| \leq \kappa$, in contradiction with the fact that A is κ -AP-closed. \Box

Acknowledgements. The authors would like to thank the referees for valuable suggestions and comments to improve the results of this paper.

References

- [1] A. Bella, On spaces with the property of weak approximation by points, Comment. Math. Univ. Carolin. 35 (1994), no. 2, 357-360.
- [2] A. Bella and J. Gerlits, On a condition for the pseudo radiality of a product, Comment. Math. Univ. Carolin. 33 (1992), no. 2, 311-313.
- [3] M. H. Cho, M. A. Moon, and J. Kim, New Cardinal Functions Related to Almost Closed Sets, Honam Math. J. 35 (2013), no.3, 541-550.
- [4] R. Engelking, General Topology, Revised and completed edition, Heldermann Verlag, Berlin, 1989.
- [5] W. C. Hong, *Generalized Fréchet-Urysohn Spaces*, J. Korean Math. Soc. 44 (2007), no. 2, 261-273.
- [6] P. J. Nyikos, Convergence in Topology, in Recent Progress in General Topology, Hušek and van Mill ed., North Holland, Amsterdam, 1992.
- [7] A. Pultr and A. Tozzi, Equationally closed subframes and representation of quotient spaces, Cahiers Topologie Géom. Différentielle Catég. 34 (1993), no. 3, 167-183.
- [8] P. Simon, On accumulation points, Cahiers Topologie Géom. Différentielle Catég. 35 (1994), no. 4, 321-327.
- [9] V. V. Tkachuk, A Cp-Theory Problem Book: Special Features of Function Spaces, Springer, 2014.
- [10] V. V. Tkachuk and I. V. Yaschenko, Almost closed sets and topologies they determine, Comment. Math. Univ. Carolinae, 42(2) (2001), 393-403.

Myung Hyun Cho Department of Mathematics Education Wonkwang University 460 Iksan-daero, Iksan-si, Jeonbuk 54538 Republic of Korea E-mail: mhcho@wonkwang.ac.kr

Junhui Kim Department of Mathematics Education Wonkwang University 460 Iksan-daero, Iksan-si, Jeonbuk 54538 Republic of Korea E-mail: junhikim@wonkwang.ac.kr