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ON THE SEQUENCE GENERATED BY A CERTAIN

TYPE OF MATRICES

Hyeong-Kwan Ju

Abstract. Several properties of the sequence generated from a
kind of Danzer matrices were examined and proved using already
known facts about the Chebyshev polynomials. Asymptotic behav-
ior of our interest sequence also discussed.

1. Introduction

In this section we introduce a particular type of Danzer matrices and
a sequence generated from one of them.

Suppose M be a square matrix with nonnegative integer entries. We
also let s(M) be the sum of all the entries of the matrix M . Let matrix
B(n) be a matrix of size n × n with a value 1 over the anti-diagonal
entries or above, and with a value 0 elsewhere. This matrix is a kind of
Danzer matrices.(See [3] and [6] for details.) For example,

B(5) =


1 1 1 1 1
1 1 1 1 0
1 1 1 0 0
1 1 0 0 0
1 0 0 0 0


Let b(m,n) := s((B(n))m). This sequence with double indices is

given in A050446 of OEIS([6]). This matrix arises and appears in several
different areas of mathematics and has some interesting properties.(See
[1], [2] and [5].) Below we list the first few columns and rows of this
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sequence.

1 1 1 1 1 1 1 · · ·
1 2 3 4 5 6 7 · · ·
1 3 6 10 15 21 28 · · ·
1 5 14 30 55 91 140 · · ·
1 8 31 85 190 371 658 · · ·
...

...
...

...
...

...
...

. . .

There are four conjectures on this sequence. We can see A205497 of
OEIS([6]) for those conjectures.

2. Main Results

This section introduces and shows the main results and related facts
of this article.

Fact 2.1. [2] The nth column has the rational function of the form

Fn(x) =
Pn(x)

Qn(x)
,

where Pn(x) and Qn(x) are polynomials without any nontrivial common
factors.

Example 2.2. [2]

F1(x) =
1

−x+ 1
=

1

1− x
=
P1(x)

Q1(x)
,

F2(x) =
1

−x+
1

x+ 1

=
1 + x

1− x− x2
=
P2(x)

Q2(x)
,

F3(x) =
1

−x+
1

x+
1

−x+ 1

=
1 + x− x2

1− 2x− x2 + x3
=
P3(x)

Q3(x)
,

F4(x) =
1

−x+
1

x+
1

−x+
1

x+ 1

=
1 + 2x− x2 − x3

1− 2x− 3x2 + x3 + x4
=
P4(x)

Q4(x)

...
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The x and −x at the bottom left of the continued fraction appear alter-
natively.

Fact 2.3. [7]

Qn(x) = det(I − xB(n))

Fact 2.3 comes from the following. Let M be a square matrix of
size m × m. We also denote Mij(n) := (Mn)ij , (i, j)-entry of matrix
Mn. We consider a generating function Fij(M, t) given by the sequence
(Mij(n))n≥0 as follows:

Fij(M, t) :=
∑
n≥0

Mij(n)tn.

Then we have the following result ([7], Ch.4), so-called Transfer-Matrix
Method:

Theorem 2.4.

Fij(M, t) =
(−1)i+j det(I − tM : j, i)

det(I − tM)
,

where (B : j, i) denotes the matrix obtained by removing the j-th row
and the i-th column of the matrix B.

Theorem 2.5. Qn(x) satisfies the following recurrence relation

Q0(x) = 1, Q1(x) = 1− x,
Qn(x) = −xQn−1(−x) +Qn−2(x) (n ≥ 2).

Proof. By convention, Q0(x) = 1. Example 2.2 shows that Q1(x) =
1− x.

Pn(x)

Qn(x)
= Fn(x) =

1

−x+ Fn−1(x)
=

1

−x+
Pn−1(−x)

Qn−1(−x)

=
Qn−1(−x)

Pn−1(−x)− xQn−1(−x){
Pn(x) = Qn−1(−x),

Qn(x) = −xQn−1(−x) + Pn−1(−x)

From the last recursive system, we get the desired recurrence relation

Qn(x) = −xQn−1(−x) +Qn−2(x).
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It is immediate to obtain the next result from the proof of Theo-
rem 2.5.

Corollary 2.6. For n ≥ 1,

Pn(x) = Qn−1(−x).

Conjecture 2.7. The mth row has the rational function of the form

Gm(t) =
Hm(t)

(1− t)m
(m = 3, 4, 5, . . . ),

where Hm(t) are polynomials without any non-trivial common factors.

Example 2.8.

G3(t) =
H3(t)

(1− t)3
=

1

(1− t)3
,

G4(t) =
H4(t)

(1− t)4
=

1 + t

(1− t)4
,

G5(t) =
H5(t)

(1− t)5
=

1 + 3t+ t2

(1− t)5
,

G6(t) =
H6(t)

(1− t)6
=

1 + 7t+ 7t2 + t3

(1− t)6
...

In particular, what we should note here is the function Hm(t) for
n = 3, 4, 5, . . . . Coefficients of Hm(t) for a few m are listed on the
A205497 in OEIS([6]). Below is a list of the first few of them.

1
1 1
1 3 1
1 7 7 1
1 14 31 14 1
1 26 109 109 26 1

...

Conjecture 2.9. Hm(t) is symmetric for all m. That is,

Hm(t) = tm−3Hm(1/t)

for m = 3, 4, 5, . . . .
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Notice that row sums Hm(t) of the previous table seem to be Euler’s
updown number. (See A000111 in [OEIS].) One could try to give com-
binatorial interpretation of Hm(t). Conjecture 2.7 and Conjecture 2.9
were discussed in the article [4]. We mainly focus on the polynomial
Qn(x). From now on we will clarify and reveal the several properties
concerning Qn(x).

Let Un(x) be the Chebyshev polynomial of the second kind. They
are generated by the recurrence relation with initial conditions as shown
below ([8]):

U0(x) = 1, U1(x) = 2x,

Un(x) = 2xUn−1(x)− Un−2(x) (n ≥ 2).

Fact 2.10. The generating function of the polynomial sequence Un(x)
is as follows: ∑

n≥0
Un(x)tn =

1

1 + t2 − 2xt
.

Fact 2.11. Un(x) = 0 if and only if x = xk = 2 cos
(
kπ
n+1

)
for k =

1, 2, 3, . . . , n. In addition,

Un(x) = 2n
n∏
k=1

(x− xk)

also holds.

Let Wn(x) := U2n

(x
2

)
. Then, next results hold.

Lemma 2.12. W0(x) = 1,W1(x) = x2 − 1, and

Wn(x) = (x2 − 2)Wn−1(x)−Wn−2(x).

Its generating function is

∞∑
n=0

Wn(x)tn =
1 + t2

(1 + t2)2 − x2t2
.
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Proof. W0(x) = U0

(x
2

)
= 1. W1(x) = U2

(x
2

)
= 4

(x
2

)2
−1 = x2−1.

Wn(x) = U2n

(x
2

)
= 2

(x
2

)
U2n−1

(x
2

)
− U2n−2

(x
2

)
= x

(
xU2n−2

(x
2

)
− U2n−3

(x
2

))
− U2n−2

(x
2

)
= (x2 − 1)Wn−1(x)− xU2n−3

(x
2

)
= (x2 − 1)Wn−1(x)− U2n−2

(x
2

)
− U2n−4

(x
2

)
= (x2 − 2)Wn−1(x)−Wn−2(x).

Fact 2.11 states that ∑
n≥0

Un(x)tn =
1

1 + t2 − 2xt
.

∑
n≥0

U2n(x)t2n =
1

2
(

1

1 + t2 − 2xt
+

1

1 + (−t)2 + 2xt
) =

1 + t2

(1 + t2)2 − 4x2t2
.

Hence,

∞∑
n=0

Wn(x)tn =
1 + t2

(1 + t2)2 − x2t2

follows.

Note that Wn(x) = 0↔ x = xk = 2 cos

(
kπ

2n+ 1

)
(1 ≤ k ≤ 2n). Let

Ln(x) :=

n∏
k=1

(x− x2k−1) =

n∏
k=1

(
x− 2 cos

(
(2k − 1)π

2n+ 1

))
,

L∗n(x) :=
Wn(x)

Ln(x)
=

n∏
k=1

(
x− 2 cos

(
2kπ

2n+ 1

))
.

Fact 2.13. (A108299 of [OEIS])∑
n≥0

Ln(x)tn =
1− t

1 + t2 − xt
.
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In particular, Ln(x) is the characteristic polynomial of the form

0 1 0 · · · 0 0
1 0 1 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 1 1


(See A108299 of OEIS for the rest of details on Ln(x).)

Lemma 2.14. L∗n(x) = Ln(−x)(−1)n for all n. Hence, its generating
function is ∑

n≥0
L∗n(x)tn =

1 + t

1 + t2 − xt
.

Proof. ∑
n≥0

L∗n(x)tn =
∑
n≥0

(−1)nLn(−x)tn

=
∑
n≥0

Ln(−x)(−t)n

=
1− (−t)

1 + (−t)2 − (−x)(−t)

=
1 + t

1 + t2 − xt
.

Example 2.15.

W4(x) = 1− 10x2 + 15x4 − 7x6 + x8.

L4(x) = 1 + 2x− 3x2 − x3 + x4‘,

L∗4(x) = Ln(−x)(−1)4 = 1− 2x− 3x2 + x3 + x4,

Hence, W4(x) = L4(x)L∗4(x) = (1− 3x2 + x4)2 − (2x− x3)2.

W5(x) = −1 + 15x2 − 35x4 + 28x6 − 9x8 + x10.

L5(x) = −1 + 3x+ 3x2 − 4x3 − x4 + x5,

L∗5(x) = L5(−x)(−1)5 = 1 + 3x− 3x2 − 4x3 + x4 + x5.

Hence, W5(x) = L5(x)L∗5(x) = (3x− 4x3 + x5)2 − (−1 + 3x2 − x4)2.
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There might be certain relationship between those three generating

functions
1 + t2

(1 + t2)2 − x2t2
,

1− t
1 + t2 − xt

, and
1 + t

1 + t2 − xt
.

Theorem 2.16.

∞∑
n=0

Qn(x)tn =
(1 + t)(1− t2 − xt)

(1− t2)2 + x2t2
.

Proof. Let H(x, t) =
∑
n≥0

Qn(x)tn. From the recurrence relation in

Theorem 2.5,

H(x, t)−Q0(x)−Q1(x)t = −xt(H(−x, t)−Q0(−x)) + t2H(x, t)

(1− t2)H(x, t) + xtH(−x, t) = 1 + t(1)

(1− t2)H(x,−t)− xtH(−x,−t) = 1− t(2)

We can rewrite the formula (2) as follows:

(1− t2)H(−x, t)− xtH(x, t) = 1 + t(3)

From formulae (1) and (3), we obtain the desired generating function on
Qn(x).

Theorem 2.17. Qn(x) and Ln(x) have the following relationship:

Qn(x) = (−1)b
n+1
2
cLn((−1)n+1x)

for n = 0, 1, 2, . . . . In other words,

Qn(x) =


Ln(−x), n ≡ 0( mod 4)

−Ln(x), n ≡ 1( mod 4)

−Ln(−x), n ≡ 2( mod 4)

Ln(x), n ≡ 3( mod 4).
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Proof. Let U(x, t) :=
1− t

1 + t2 − xt
and V (x, t) :=

(1 + t)(1− t2 − xt)
(1− t2)2 + x2t2

.∑
n≥0

L4n(−x)t4n −
∑
n≥0

L4n+1(x)t4n+1 −
∑
n≥0

L4n+2(−x)t4n+2 +
∑
n≥0

L4n+3(x)t4n+3

=
∑
n≥0

L2n(−x)(it)2n + i
∑
n≥0

L2n+1(x)(it)2n+1

=
1

2
(U(−x, it) + U(−x,−it)) +

i

2
(U(x, it)− U(x,−it))

=
1− t2 − xt2

(1− t2)2 + x2t2
+

t− xt− t3

(1− t2)2 + x2t2

= V (x, t)

The roots of Qn(x) are obtained immediately by Theorem 2.17.

Corollary 2.18. The roots of Qn(x) are as follows:

xk = (−1)n+12 cos

(
2k − 1

2n+ 1
π

)
, k = 1, 2, . . . , n.

Theorem 2.19.

min

{
|xk| : xk = 2 cos

(
2k − 1

2n+ 1
π

)
, k = 1, 2, . . . , n

}
= xbn+2

2
c = 2 sin

(
π

2(2n+ 1)

)
.

Proof. The root with the smallest absolute value is

x = (−1)n+12 cos

n+
1 + (−1)n

2
2n+ 1

π

 = (−1)n+12 cos

(
2n+ 1 + (−1)n

2(2n+ 1)
π

)

= (−1)n+12 cos

(
π

2
+

(−1)nπ

2(2n+ 1)

)
= (−1)n2 sin

(
(−1)nπ

2(2n+ 1)

)
= 2 sin

(
π

2(2n+ 1)

)
.

Roots of the polynomial Qn(x) are the reciprocals of the eigenvalues
of the matrix B(n). Asymptotic ratio of the sequence {b(m,n)}∞n=0 is
dominated by the largest eigenvalue of the matrix B(n). Let

α(n) :=
1

2 sin

(
π

2(2n+ 1)

) .
Then, this fact gives us the following conclusion.
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Theorem 2.20. b(m,n) = O((α(n))m) as m→∞. Equivalently,

lim
m→∞

ln(b(m,n))

m
= ln(α(n)).

Proof. Since b(m,n) =
∑n

k=1 ck

(
1

2
csc

(
(2k − 1)π

2n+ 1

))m
for some con-

stants c1, . . . , cn,

lim
m→∞

b(m+ 1, n)

b(m,n)
=

1

2 sin
(

π
2(2n+1)

) = α(n),

the conclusion follows.

Example 2.21.

F5(x) =

∞∑
m=0

b(m, 5)xm =
P5(x)

Q5(x)
=

1

−x+
1

x+
1

−x+
1

x+
1

−x+ 1

.

α(5) =
1

2
csc

(
π

2(2 · 5 + 1)

)
= 3.513347091 · · ·

b(m, 5) : 1, 5, 15, 55, 190, 671, 2353, 8272, 29056, 102091, 358671, · · ·

b(m+ 1, 5)

b(m, 5)
:

5

1
= 5,

15

5
= 3,

55

15
∼= 3.666667,

190

55
∼= 3.454545,

671

190
∼= 3.531579,

2353

671
∼= 3.506706,

8272

2353
∼= 3.515512, · · · , 358671

102091
∼= 3.513248, . . . .

3. Concluding Remarks and Further Questions

First, as already mentioned earlier, it might be necessary to clarify
the relationship between the three functions Wn(x), Ln(x) and L∗n(x).
Next, if we change second-order linear recurrence relation on Qn(x) to
the linear system, then, through matrix analysis, maybe we can get more
information and understand better about Qn(x) and b(m,n). Finally, it
would be very valuable attempt to provide a combinatorial interpretation
of Hn(x).



On the sequence generated by a Certain Type of Matrices 675

References
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