DOI QR코드

DOI QR Code

Effects of pre-curing process on improvement of the compressive strength of IGCC-slag-based-geopolymer

IGCC 용융 슬래그로 제조된 지오폴리머의 강도증진에 Pre-curing이 미치는 영향

  • Park, Soo-bin (Department of Advanced Material Engineering, Kyonggi University) ;
  • Kim, Kang-duk (Department of Advanced Material Engineering, Kyonggi University) ;
  • Kang, Seung-gu (Department of Advanced Material Engineering, Kyonggi University)
  • 박수빈 (경기대학교 신소재공학과) ;
  • 김강덕 (경기대학교 신소재공학과) ;
  • 강승구 (경기대학교 신소재공학과)
  • Received : 2017.09.25
  • Accepted : 2017.10.24
  • Published : 2017.12.31

Abstract

In this study, the effect of pre-curing process on the enhancement of mechanical properties of IGCC-slag-based-geopolymer was studied. Pre-curing is a process in which the green geopolymer is left at room temperature for a certain period of time prior to the high-temperature curing, and it is known as increasing the strength of a specimen. Therefore, in this experiment, the compressive strength of the geopolymers was measured according to various pre-curing conditions, and microstructure and crystal phase changes were observed by SEM and XRD, respectively. The W/S ratio was determined to be 0.26, which can offer the maximum geopolymer strength with easy molding ability, and the concentration of the alkali solution was 15 M. Pre-curing was performed at room temperature for 0 to 27 days. Compressive strength of the geopolymer made with pre-curing process increased by 36~87 % compared with the specimens made with no pre-curing process. Those improved compressive strength for the pre-cured geopolymer was confirmed owing to promotion effect of pre-curing process on generation of C-S-H gel and zeolite phases, which were analyzed using by XRD and SEM measurement.

본 연구에서는 IGCC(Integrated Gasification Combined Cycle; 석탄 가스화 복합 발전)에서 배출된 용융 슬래그(이하 용융 슬래그)를 이용한 지오폴리머의 제조 시 pre-curing 공정이 지오폴리머의 물성에 미치는 영향에 대해 연구하였다. Pre-curing이란 고온양생으로 지오폴리머를 제조하기 전에, 성형체를 상온에서 일정 시간 방치하는 공정으로서, 시편의 강도를 높이는 효과가 있다고 알려져 있다. 따라서 본 실험에서는 pre-curing 조건에 따른 지오폴리머의 압축강도 특성을 측정하였으며, SEM과 XRD로 미세구조 및 결정상 변화를 관찰하였다. W/S 비율(water/solid ratio)은 사전 실험을 통해, 성형이 가능하면서 최대 지오폴리머 강도를 확보할 수 있는 0.26으로 결정하였으며, 자극제인 알칼리 용액의 농도는 15 M로 고정하였다. 상온에서 pre-curing을 0~27일 범위 내에서 실시한 결과, pre-curing 공정을 적용한 지오폴리머의 경우, 그렇지 않은 시편에 비해 압축강도가 36~87 % 증가하는 것을 확인하였다. Pre-curing 시킨 시편에서 XRD 측정 결과, C-S-H 겔(calcium silicate hydroxide gel) 상 발현이 촉진되었고 SEM을 이용한 미세구조 관찰 결과, 부정형의 zeolite 상이 더 많이 성장된 것이 관찰되었으며 이러한 상들의 생성이 강도 증진에 영향을 미친 것으로 분석되었다.

Keywords

References

  1. E.-M. An, S.-B. Cho, S. Lee, H. Miyauchi and G.-Y. Kim, "Compressive strength properties of geopolymer using power plant bottom ash and NaOH activator", Kor. J. Mater. Res. 22 (2012) 71. https://doi.org/10.3740/MRSK.2012.22.2.71
  2. Y.-K. Cho, G.-D. Moon, J.-M. La and S.-H. Jung, "Effect of Curing Conditions on the Strength of Fly-Ash based geopolymer", J. Kor. Conc. Instit. 26 (2014) 449. https://doi.org/10.4334/JKCI.2014.26.4.449
  3. J. Davidovits, "Geopolymers: inorganic polymeric new materials", J. Therm. Analysis 37 (1991) 1633. https://doi.org/10.1007/BF01912193
  4. P. Duxon and J.L. Provis, "Designing precursors for geopolymer cements", J. Amer. Cer. Soc. 91 (2008) 3864. https://doi.org/10.1111/j.1551-2916.2008.02787.x
  5. M. Lizcano, A. Gonzalez, S. Basu, K. Lozano and M. Radovic, "Effects of water content and chemical composition on structural properties of alkaline activated metakaolin-based geopolymers", J. Amer. Cer. Soc. 95 (2012) 2169. https://doi.org/10.1111/j.1551-2916.2012.05184.x
  6. S. Suber, "Influence of Aggregate on the Microstructure of Geopolymer" (Curtin Univ. of Tech., Perth, 2004) 1.
  7. Q. Zhao, B. Nair, T. Rahimian and P. Balaguru, "Novel geopolymer based composites with enhanced ductility", J. Mater. Sci. 42 (2007) 3131. https://doi.org/10.1007/s10853-006-0527-4
  8. A.D. Hounsi, G.L. Nana, G. Djeteli, P. Blanchart, D. Alowanou, P. Kpelou, K. Napo, G. Tchangbedji and M. Praisler, "How does Na, K alkali metal concentration change the early age structural characteristic of kaolinbased geopolymers", Cer. Int. 40 (2014) 8953. https://doi.org/10.1016/j.ceramint.2014.02.052
  9. P. Duxon, A. Fernandez-Jimenez, J.L. Provis, G.C. Lukey, A. Palomo and J.S.J. van Deventer, "Geopolymer technology: The current state of the art", J. Mater. Sci. 42 (2007) 2917. https://doi.org/10.1007/s10853-006-0637-z
  10. J.G.S. van Jaarsveld and J.S.J. van Deventer, "Effect of the alkali metal activator on the properties of fly ashbased geopolymers", Ind. Eng. Chem. Res. 38 (1999) 3932. https://doi.org/10.1021/ie980804b
  11. M. Sarkar, K. Dana and S. Das, "Microstructural and phase evolution in metakaolin geopolymers with different activators and added aluminosilicate fillers", J. Molec. Struc. 1098 (2015) 110. https://doi.org/10.1016/j.molstruc.2015.05.046
  12. K. Neupane, R. Sriravindrarajah, D. Baweja and D. Chalmers, "Effect of curing on the compressive strength development in structural grades of geocement concrete", Const. Build. Mater. 94 (2015) 241. https://doi.org/10.1016/j.conbuildmat.2015.07.005
  13. A. Hajimohammadi, T. Ngo and P. Mendis, "How does aluminium foaming agent impact the geopolymer formation mechanism?", Cem. Conc. Comp. 80 (2017) 227.
  14. M.Y.J. Liu, U.J. Alengaram, M. Santhanam, M.Z. Jumaat and K.-H. Mo, "Microstructural investigations of palm oil fuel ash and fly ash based binders in lightweight aggregate foamed geopolymer concrete", Const. Build. Mater. 120 (2016) 112. https://doi.org/10.1016/j.conbuildmat.2016.05.076
  15. T. Bakharev, "Geopolymeric materials prepared using Class F fly ash and elevated temperature curing", Cem. Conc. Res. 35 (2005) 1224. https://doi.org/10.1016/j.cemconres.2004.06.031
  16. P. Duan, C. Yan and W. Zhou, "Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack", Cer. Int. 42 (2016) 3504. https://doi.org/10.1016/j.ceramint.2015.10.154
  17. L.N. Assi, E. Deaver, M.K. EIBatanouny and P. Ziehl, "Investigation of early compressive strength of fly ashbased geopolymer concrete", Const. Build. Mater. 112 (2016) 807. https://doi.org/10.1016/j.conbuildmat.2016.03.008
  18. Concrete Standard Specification of Korea, Ministry of Land, Infrastructure and Transport (2016).
  19. Q. Wan, F. Rao, S. Song, R.E. Garcia, R.M. Estrella, C.L. Patino and Y. Zhang, "Geopolymerization reaction, microstructure and simulation of metakaolin-based geopolymers at extended Si/Al ratios", Cem. Conc. Comp. 79 (2017) 45. https://doi.org/10.1016/j.cemconcomp.2017.01.014
  20. S. Lee, E.-M. An and Y.-H. Cho, "Effect of foaming agent content on the apparent density and compressive strength of lightweight geopolymers", J. Rec. Const. Resources 4 (2016) 363.
  21. L. Zhang, F. Zhang, M. Liu and X. Hu, "Novel sustainable geopolymer based syntactic foams: An eco-friendly alternative to polymer based syntactic foams", Chem. Eng. J. 313 (2017) 74. https://doi.org/10.1016/j.cej.2016.12.046
  22. S. Delair, E. Prud'homme, C. Peyratout, A. Smith, P. Michaud, L. Eloy, E. Joussein and S. Rossignol, "Durability of inorganic foam in solution: The role of alkali elements in the geopolymer network", Corr. Sci. 59 (2012) 213. https://doi.org/10.1016/j.corsci.2012.03.002
  23. J.T. Kim, D.S. Seo, G.J. Kim and J.K. Lee, "Influence of alkaline-activator content on the compressive strength of aluminosilicate-based geopolymer", J. Kor. Cer. Soc. 47 (2010) 216. https://doi.org/10.4191/KCERS.2010.47.3.216
  24. N.-K. Lee, H.R. Khalid and H.K. Lee, "Synthesis of mesoporous geopolymers containing zeolite phases by a hydrothermal treatment", Mic. Meso. Mater. 229 (2016) 22. https://doi.org/10.1016/j.micromeso.2016.04.016
  25. H.M. Khater, "Effect of silica fume on the characterization of the geopolymer materials", Int. J. Adv. Struc. Eng. 12 (2013) 5.