DOI QR코드

DOI QR Code

Fabrication and characterization of ZrxCe1-xO2 catalytic powder by a hydrothermal process

수열합성공정에 의한 ZrxCe1-xO2 촉매 분말의 제조 및 특성

  • Choi, Yeon-Bin (Department of Advanced Materials Science and Engineering, Changwon National University) ;
  • Son, Jeong-hun (Department of Advanced Materials Science and Engineering, Changwon National University) ;
  • Sohn, Jeong Ho (School of Port and Logistics, Kaya University) ;
  • Bae, Dong-Sik (Department of Advanced Materials Science and Engineering, Changwon National University)
  • 최연빈 (창원대학교 신소재공학부) ;
  • 손정훈 (창원대학교 신소재공학부) ;
  • 손정호 (가야대학교 항만물류학과) ;
  • 배동식 (창원대학교 신소재공학부)
  • Received : 2017.08.30
  • Accepted : 2017.11.13
  • Published : 2017.12.31

Abstract

The ceria powder is excellent in oxygen storage capacity (OSC) through the oxidation and reduction reaction of Ce ions and is used as a typical material for a three-way catalyst of an automobile which purifies the exhaust gas. However, since ceria generally has poor thermal stability at high temperatures, it is doped with metal ions to improve thermal stability. Therefore, in this study, Zr ions were doped into ceria powder, and their characteristics were further improved due to the increase of specific surface area with decreasing particle size due to doping. In this study, the synthesis of zirconium doped ceria nanopowder was synthesized by hydrothermal process. In order to synthesis Zr ion doped ceria nanopowder, the precursor reaction at was $200^{\circ}C$ for 6 hours. The average particle size of synthesized Zr doped $CeO_2$ nanopowder was below 20 nm. The specific surface area of synthesized Zr ion doped ceria nanopowder increased from $52.03m^2/g$ to $132.27m^2/g$ with Zr increased 30 %.

세리아 분말은 Ce 이온의 산화, 환원 반응을 통한 산소저장능력(OSC)이 뛰어나 배기가스를 정화하는 자동차의 삼원촉매에 대표적인 재료로 사용된다. 그러나 일반적으로 세리아는 고온에서 열적 안정성이 떨어지기 때문에 금속이온을 도핑시켜 열적 안정성을 향상시켜 사용한다. 따라서 본 연구에서는 Zr 이온을 세리아 분말에 도핑시켰고, 도핑으로 인해 입자크기가 감소하면서 비 표면적 증가로 인해 그 특성은 더욱 향상되었다. 그리고 본 연구에서는 세리아 및 Zr 이온이 도핑된 세리아를 나노 크기로 합성하기 위해 수열반응법을 이용하여 합성하였다. 수열합성 조건은 pH = 11, 반응온도는 $200^{\circ}C$에서 6시간 동안 합성하였다. 수열합성법을 이용하여 합성된 세리아 및 Zr 도핑 $CeO_2$ 나노 분말의 평균 입자 크기는 약 20 nm 이하였다. 합성된 세리아 나노분말의 비표면적은 $52.03m^2/g$, Zr 이온이 도핑된 $CeO_2$ 분말의 비 표면적 $132.27m^2/g$이었다.

Keywords

References

  1. N. Phonthammachai, M. Rumruangwong, E. Gulari, A.M. Jamieson, S. Jitkarnka and S. Wongkasemjit, "Synthesis and rheological properties of mesoporous nanocrystalline $CeO_2$ via sol-gel process", Colloids Surf. A 247 (2004) 61. https://doi.org/10.1016/j.colsurfa.2004.08.030
  2. L. Liu and L. Hong, "Ceria-supported nickel borate as a sulfur-tolerant catalyst for autothermal reforming of a proxy jet fuel", Catal. Today 263 (2016) 52. https://doi.org/10.1016/j.cattod.2015.07.047
  3. L. Ilieva, G. Pantaleo, I. Ivanov, R. Nedyalkova, A.M. Venezia and D. Andreeva, "NO reduction by CO over gold based on ceria, doped by rare earth metals", Catal. Today 139 (2008) 168. https://doi.org/10.1016/j.cattod.2008.06.033
  4. Q. Fu, S. Kudriavtseva, H. Saltsburg and M.F. Stephanopoulos, "Gold-ceria catalysts for low-temperature water-gas shift reaction", Chem. Eng. J. 93 (2003) 41. https://doi.org/10.1016/S1385-8947(02)00107-9
  5. H.C. Yao and Y.F.Y. Yao, "Ceria in automotive exhaust catalysts: 1. oxygen storage", J. Catal. 86 (1984) 254. https://doi.org/10.1016/0021-9517(84)90371-3
  6. T. Bunluesin, R.J. Gorte and G.W. Graham, "Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties", Appl. Catal. B. 15 (1998) 107. https://doi.org/10.1016/S0926-3373(97)00040-4
  7. G. Panzera, V. Modafferi, S. Candamano, A. Donato, F. Frusteri and P.L. Antonucci, "CO selective oxidation on ceria-supported Au catalysts for fuel cell application", J. Power Sources 135 (2004) 177. https://doi.org/10.1016/j.jpowsour.2004.04.006
  8. A.V. Thorat, T. Ghoshal, P. Carolan, J.D. Holmes and M.A. Morris, "Defect chemistry and vacancy concentration of luminescent europium doped ceria nanoparticles by the solvothermal method", J. Phys. Chem. C. 118 (2014) 10700. https://doi.org/10.1021/jp410213n
  9. P. Bera, A. Gayen, M.S. Hegde, N.P. Lalla, L. Spadaro, F. Frusteri and F. Arena, "Promoting effect of $CeO_2$ in combustion synthesized Pt/$CeO_2$ catalyst for CO oxidation", J. Phys. Chem. B. 107 (2003) 6122. https://doi.org/10.1021/jp022132f
  10. R. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin and T. Sato, "Synthesis and UV-shielding properties of ZnO- and CaO-doped $CeO_2$ via soft solution chemical process", Solid State Ionics 151 (2002) 235. https://doi.org/10.1016/S0167-2738(02)00715-4
  11. K. Tanwar, N. Jaiswal, D. Kumar and O. Parkash, "Synthesis & characterization of Dy and Ca Co-doped ceria based solid electrolytes for IT-SOFCs", J. Alloys Compd. 684 (2016) 683. https://doi.org/10.1016/j.jallcom.2016.05.223
  12. P. Jasinski, T. Suzuki and H.U. Anderson, "Nanocrystalline undoped ceria oxygen sensor", Sensor Actuator B Chem. 95 (2003) 73. https://doi.org/10.1016/S0925-4005(03)00407-6
  13. O.P. Rodriguez, C.F. Valdes, M. Garriga, M.I. Alonso, X. Obradors and T. Puig, "Optical properties of ceriazirconia epitaxial films grown from chemical solutions", Mater. Chem. Phys. 138 (2013) 462. https://doi.org/10.1016/j.matchemphys.2012.11.069
  14. B. Choudhury and A. Choudhury, "$Ce^{3+}$ and oxygen vacancy mediated tuning of structural and optical properties of $CeO_2$ nanoparticles", Mater. Chem. Phys. 131 (2012) 666. https://doi.org/10.1016/j.matchemphys.2011.10.032
  15. Z. Fang, K.S. Thanthiriwatte, D.A. Dixon, L. Andrews and X. Wang, "Properties of cerium hydroxides from matrix infrared spectra and electronic structure calculations", Inorg. Chem. 55 (2016) 1702. https://doi.org/10.1021/acs.inorgchem.5b02619
  16. A.G. Macedo, S.E.M. Fernandes, A.A. Valente, R.A.S. Ferreira, L.D. Carlos and J. Rocha, "Catalytic performance of ceria nanorods in liquid-phase oxidations of hydrocarbons with tert-butyl hydroperoxide", Molecules. 15 (2010) 747. https://doi.org/10.3390/molecules15020747
  17. S.A. Tabrizi, "Optimization of the synthesis parameters of high surface area ceria nanopowder prepared by surfactant assisted precipitation method", Appl. Surf. Sci. 257 (2011) 10595. https://doi.org/10.1016/j.apsusc.2011.07.056
  18. C.M.Y. Yeung, F. Meunier, R. Burch, D. Thompsett and S.C. Tsang, "Comparison of new microemulsion prepared "Pt-in-ceria catalyst with conventional Pt-on-ceria catalyst for water-gas shift reaction", J. Phys. Chem. B. 110 (2006) 8540. https://doi.org/10.1021/jp061083u
  19. K. Higashi, K. Sonoda, H. Ono, S. Sameshima and Y. Hirata, "Synthesis and sintering of rare-earth-doped ceria powder by the oxalate coprecipitation method", J. Mater. Res. 14 (1999) 957. https://doi.org/10.1557/JMR.1999.0127
  20. X. Gao, Y. Jiang, Y. Zhong, Z. Luo and K. Cen, "The activity and characterization of $CeO_2$-$TiO_2$ catalysts prepared by the sol-gel method for selective catalytic reduction of NO with $NH_3$", J. Hazard. Mater. 174 (2010) 734. https://doi.org/10.1016/j.jhazmat.2009.09.112
  21. T. Karaca, T.G. Altincekic and M.F. Oksuzomer, "Synthesis of nanocrystalline samarium-doped $CeO_2$ (SDC) powders as a solid electrolyte by using a simple solvothermal route", Ceram. Int. 36 (2010) 1101. https://doi.org/10.1016/j.ceramint.2009.12.005
  22. W. Yuejuan, M. Jingmeng, L. Mengfei, F. Ping and H. Mai, "Preparation of high-surface area nano-$CeO_2$ by template-assisted precipitation method", J. Rare Earth. 25 (2007) 58.
  23. H. Wang, X. Gong, Y.L. Guo, Y. Guo, G. Lu and P. Hu, "A model to understand the oxygen vacancy formation in Zr-doped $CeO_2$: electrostatic interaction and structural relaxation", J. Phys. Chem. 113 (2009) 10229.
  24. P. Singh and M. S. Hegde, "Controlled synthesis of nanocrystalline $CeO_2$ and $Ce_{1−x}M_xO_{2−d}$ (M = Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method: Structure and oxygen storage capacity", J. Solid State Chem. 181 (2008) 3248. https://doi.org/10.1016/j.jssc.2008.08.018