DOI QR코드

DOI QR Code

Safety Evaluation of Concert Hall Floor Vibration Using Numerical Analysis Model

수치해석모델을 이용한 콘서트 홀 바닥진동 안전성 평가

  • Received : 2017.08.25
  • Accepted : 2017.10.27
  • Published : 2017.12.29

Abstract

In this paper, the floor vibration of an example concert hall building was measured and floor safety criteria were analytically checked through comparison between experimental and analytical results. The floor bottom plate model was constructed considering the composite effect and the analytical model was modified to have the natural frequency identical to the measured one. Also, time history analysis was conducted using the dynamic loads induced by human rhythmic movement during a musical performance, and the analytically calculated floor accelerations were similar to the measured one. Based on this model, the floor vibration level due to the group activities of about 400 persons, maximum available persons for the concert hall, was estimated. It was confirmed that the human induced dynamic loads applied to the column and beam would be much lower than the design strength. In addition, the horizontal acceleration level is just 2% of the design seismic load, so the concert hall is safe in both vertical and horizontal excitations by human rhythmic movements.

본 논문에서는 실제 공연장을 예제 건물로 하여 공연장에 발생한 진동을 측정한 결과를 바탕으로 공연장 구조물의 안전성에 대해 해석적으로 평가하였다. 수치해석 프로그램은 MIDAS GEN을 사용하였으며, 바닥판은 합성효과를 고려하여 모델링하였다. 해석결과 진동계측실험을 통해 구한 바닥판 고유진동수와 유사한 결과를 보였다. 또한 군중의 율동에 의한 동적하중을 시간이력해석으로 해석하여 진동계측 실험과 유사한 수준의 바닥판 가속도 응답을 확인하였다. 이 모델을 사용하여 예제 공연장의 최대관람인원인 400명의 집단율동 시 발생하는 상황에 대하여 분석하였다. 그 결과 기둥과 보의 가해지는 외력은 설계 내력을 하회하여 안전성에 문제없음을 확인하였다. 또한 공연 시 발생하는 수평방향 진동수준은 지진하중의 2% 수준으로 수직수평 모두 안전성에 문제가 없는 것을 확인하였다.

Keywords

References

  1. Caprioli, A., Castellani, A., Cigada, A., Vanali, M. (2005) Vibration Monitoring of the G. Meazza Stadium in Milano during Concerts and Football Matches, In 23rd International Modal Analysis Conference (IMAC XXIII).
  2. Feldmann, M., Heinemeyer, C., Butz, C., Caetano, E., Cunha, A., Galanti, F., Lukic, M. (2009) Design of Floor Structures for Human Induced Vibrations, JRC-ECCS Joint Report.
  3. Ha, S., Ha, M. (2009) An Analysis of the Entertainment Element in the Urban Entertainment Center, J. Archit. Inst. Korea, Planning & Design Section, 25(4), pp.63-72.
  4. Lee, S.H., Woo, S.S., Chung, L., Lee, D.G. (2013) Field Measurements for Identification of the Vibration Accident Cause of a 39-Story Steel Building Structure. J. Archit. Inst. Korea Struct. & Constr., 29(3), pp.19-27. https://doi.org/10.5659/JAIK_SC.2013.29.3.19
  5. Midas IT (2016) Midas Gen Analysis Manual.
  6. Reynolds, P., Pavic, A. (2006) Vibration Performance of a Large Cantilever Grandstand during an International Football Match, J. Perform. Constr. Facil., 20(3), pp.202-212. https://doi.org/10.1061/(ASCE)0887-3828(2006)20:3(202)
  7. International Standards Organization (ISO) (1989) Evaluation of Human Exposure to Whole-Body Vibration-Part 2: Human Exposure to Continuous and Shock-Induced Vibrations in Buildings (1 to 80 Hz).
  8. International Standards Organization (ISO) (2007) ISO 10137: Bases for Design of Structures - Serviceability of Buildings and Walkways Against Vibrations.
  9. Smith, A.L., Hicks, S.J., Devine, P.J. (2007) SCI P354: Design of Floors for Vibration: A New Approach.
  10. Wyatt, T.A. (1989) AISC#11: Design Guide on the Vibration of Floors. London: Steel Construction Institute.
  11. BSI, B. (1996) BS 6399-1: Loading for Buildings. Code of Practice for Dead and Imposed Loads. BSI, London, UK.