DOI QR코드

DOI QR Code

Quasi-Transient Method for Thermal Response of Blunt Body in a Supersonic Flow

준-비정상해석 기법을 통한 초음속 유동 내 무딘 물체의 열응답 예측

  • Received : 2017.10.27
  • Accepted : 2017.11.21
  • Published : 2017.12.29

Abstract

In the boundary layer of supersonic or hypersonic vehicles, there is the conversion from kinetic energy to thermal energy, called aerodynamic heating. Aerodynamic heating has to be considered to design supersonic vehicles, because it induces severe heat flux to surface. Transient heat transfer analysis with CFD is used to predict thermal response of vehicles, however transient heat transfer analysis needs excessive computing powers. Loosely coupled method is widely used for evaluating thermal response, however it needs to be revised for overestimated heat flux. In this research, quasi-transient method, which is combined loosely coupled method and conjugate heat transfer analysis, is proposed for evaluating thermal response with efficiency and reliability. Defining reference time of splitting flight scenario for transient simulation is important on accuracy of quasi-transient method, however there is no algorithm to determine. Therefore the research suggests the algorithm with various flow conditions to define reference time. Supersonic flow field of blunt body with constant acceleration is calculated to evaluate quasi-transient method. Temperature difference between transient and quasi-transient method is about 11.4%, and calculation time reduces 28 times for using quasi-transient method.

본 논문에서는 과도한 계산용량이 필요한 초음속 비행체의 비정상 열응답 해석을 수행하기 위한 준-비정상해석 기법을 소개한다. 준-비정상해석 기법은 연성 연계 기법과 복합 열전달 해석기법을 통합한 방법으로 계산시간 단축시키면서 동시에 정확도를 향상시키기 위해 고안되었다. 또한 준-비정상해석 시, 해석 구간을 분할하기 위한 기준시간을 결정하는 알고리즘을 고안하여 준-비정상해석 기법의 정확도를 향상시키고자 하였다. 본 논문에서는 준-비정상해석 기법을 평가하기 위하여 가상의 비행 시나리오에서 열응답 해석을 수행하였으며, 비정상 해석 결과와 비교 검증을 수행하였다. 무딘 물체의 표면 온도 및 정체점의 온도를 통해 각각의 기법의 차이를 도출하였다. 비정상 해석을 통해 도출한 정체점의 온도와 준-비정상 해석을 통해 도출한 정체점의 온도 차이는 11.4% 이내로 높은 정확도를 확보함과 동시에 28배에 가까운 계산시간을 단축시켜 해석 기법의 효율성과 정확성을 확보하였다.

Keywords

References

  1. Anderson, J.D. (2000) Hypersonic and High Temperature Gas Gynamics, AIAA, p.696.
  2. Hayashi, K., Aso, S., Tani, Y. (2006) Experimental Study on Thermal Protection System by Opposing Jet in Supersonic Flow, J. Spacecr. & Rocket., 43(1), pp.233-235. https://doi.org/10.2514/1.15332
  3. Hayashi, K., Aso, S., Tani, Y. (2006) Numerical Study on Aerodynamic Heating Reduction by Opposing Jet, Department of Aeronautics and Astronautics, Faculty of Engineering, Kyushu University.
  4. Menter, F.R. (2009) Review of the Shear-Stress Transport Turbulence Model Experience from an Industrial Perspective, Int. J. Comput. Fluid Dyn., 23(4), pp.305-316. https://doi.org/10.1080/10618560902773387
  5. Zhang, S., Chen, F., Liu, H. (2014) Time-Adaptive, Loosely Coupled Strategy for Conjugate Heat Transfer Problems in Hypersonic Flows, J. Thermophys. & Heat Transf., 28(4), pp.635-646. https://doi.org/10.2514/1.T4278