DOI QR코드

DOI QR Code

Effects of Strain Rate and Temperature on Tensile Properties of High Mn Twinning Induced Plasticity Steels

고망간 Twinning Induced Plasticity 강의 인장 특성에 미치는 변형률 속도와 온도의 영향

  • Lee, Junghoon (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ;
  • Lee, Sunghak (Center for Advanced Aerospace Materials Pohang University of Science and Technology) ;
  • Shin, Sang Yong (School of Materials Science and Engineering University of Ulsan)
  • 이정훈 (포항공과대학교 항공재료연구센터) ;
  • 이성학 (포항공과대학교 항공재료연구센터) ;
  • 신상용 (울산대학교 첨단소재공학부)
  • Received : 2017.09.12
  • Accepted : 2017.10.20
  • Published : 2017.12.27

Abstract

Four types of high Mn TWIP(Twinning Induced Plasticity) steels were fabricated by varying the Mn and Al content, and the tensile properties were measured at various strain rates and temperatures. An examination of the tensile properties at room temperature revealed an increase in strength with increasing strain rate because mobile dislocations interacted rapidly with the dislocations in localized regions, whereas elongation and the number of serrations decreased. The strength decreased with increasing temperature, whereas the elongation increased. A martensitic transformation occurred in the 18Mn, 22Mn and 18Mn1.6Al steels tested at $-196^{\circ}C$ due to a decrease in the stacking fault energies with decreasing temperature. An examination of the tensile properties at $-196^{\circ}C$ showed that the strength of the non-Al added high Mn TWIP steels was high, whereas the elongation was low because of the martensitic transformation and brittle fracture mode. Although a martensitic transformation did not occur in the 18Mn1.9Al steel, the strength increased with decreasing temperature because many twins formed in the early stages of the tensile test and interacted rapidly with the dislocations.

Keywords

References

  1. O. Bouaziz, S. Allain and C. Scott, Scripta Mater., 58, 484 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.050
  2. S. Allain, J. P. Chateau and O. Bouaziz, Mater. Sci. Eng. A, 387, 143 (2004).
  3. O. Bouaziz, S. Allain, C. Scott, P. Cugy and D., Curr. Opin. Solid St. M, 15, 141 (2011). https://doi.org/10.1016/j.cossms.2011.04.002
  4. I. Choi, Y. Park, D. Son, S.-J. Kim and M. Moon, Met. Mater. Int., 16, 27 (2010). https://doi.org/10.1007/s12540-010-0027-6
  5. N. Ma, T. Park, D. Kim, C. Kim and K. Chung, Met. Mater. Int., 16, 427 (2010). https://doi.org/10.1007/s12540-010-0613-7
  6. G. E. Dieter, Mechanical Metallurgy, New York, McGraw-Hill Inc. (1990).
  7. S. Curtze and V.-T. Kuokkala, Acta Mater., 58, 5129 (2010). https://doi.org/10.1016/j.actamat.2010.05.049
  8. J. E. Jin and Y. K. Lee, Acta Mater., 60, 1680 (2012). https://doi.org/10.1016/j.actamat.2011.12.004
  9. L. Chen, H. S. Kim, S. K. Kim and B. C. De Cooman, ISIJ Int., 47, 1804 (2007). https://doi.org/10.2355/isijinternational.47.1804
  10. J. Kim, L. Chen, H. S. Kim, S.-K. Kim, Y. Estrin and B.C. De Cooman, Metall. Mater. Trans. A, 40A, 3147 (2009).
  11. A. Roth, T. A. Lebedkina and M. A. Lebyodkin, Mater. Sci. Eng. A, 539, 280 (2012). https://doi.org/10.1016/j.msea.2012.01.094
  12. T. A. Lebedkina, M. A. Lebyodkin, J. P. Chateau, A. Jacques and S. Allain, Mater. Sci. Eng. A, 519, 147 (2009). https://doi.org/10.1016/j.msea.2009.04.067
  13. L. H. De Almeida, I. Le May and P. R. O. Emygdio, Mater. Charact., 41, 137 (1998). https://doi.org/10.1016/S1044-5803(98)00031-X
  14. A. H. Cottrell, Trans. Metall. Soc. AIME, 212, 192 (1958).
  15. K. S. B. Rose and S. G. Glover, Acta Metall., 14, 1505 (1966). https://doi.org/10.1016/0001-6160(66)90172-6
  16. S. Hong, S. Y. Shin, H. S. Kim, S. Lee, S. Kim, K. Chin and Nack J. Kim, Metall. Mater. Trans. A, 43, 1870 (2012). https://doi.org/10.1007/s11661-011-1007-2
  17. S. Hong, S. Y. Shin, J. Lee, D-H Ahn, H. S. Kim, S.-K. Kim, K.-G. Chin and S. Lee, Metall. Mater. Trans. A, 45, 633 (2014). https://doi.org/10.1007/s11661-013-2007-1
  18. G. Frommeyer, U. Brux and P. Neumann, ISIJ Int., 43, 438 (2003). https://doi.org/10.2355/isijinternational.43.438
  19. A. Dumay, J.-P. Chateau, S. Allain, S. Migot and O. Bouaziz, Mater. Sci. Eng. A, 483, 184 (2008).
  20. N. S. Lim, H. S. Park, S. I. Kim and C. G. Park, Met. Mater. Int., 18, 647 (2012). https://doi.org/10.1007/s12540-012-4012-0
  21. L. Remy and A. Pineau, Mater. Sci. Eng., 28, 99 (1977). https://doi.org/10.1016/0025-5416(77)90093-3
  22. S. Curtze and V-T. Kuokkala, Acta Metall., 15, 5129 (2010).
  23. G. F. Bolling and R. H. Richman, Acta Metall., 13, 709 (1965). https://doi.org/10.1016/0001-6160(65)90136-7