DOI QR코드

DOI QR Code

Characterization of Highly Conducting ZnMgBeGaO/Ag/ZnMgBeGaO Transparent Conductive Multilayer Films with UV Energy Bandgap

  • Le, Ngoc Minh (Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University) ;
  • Hoang, Ba Cuong (Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University) ;
  • Lee, Byung-Teak (Photonic and Electronic Thin Film Laboratory, Department of Materials Science and Engineering, Chonnam National University)
  • Received : 2017.09.27
  • Accepted : 2017.11.27
  • Published : 2017.12.27

Abstract

ZnMgBeGaO/Ag/ZnMgBeGaO multilayer structures were sputter grown and characterized in detail. Results indicated that the electrical properties of the ZnMgBeGaO films were significantly improved by inserting an Ag layer with proper thickness (~ 10 nm). Structures with thicker Ag films showed much lower optical transmission, although the electrical conductivity was further improved. It was also observed that the electrical properties of the multilayer structure were sizably improved by annealing in vacuum (~35 % at $300^{\circ}C$). The optimum ZnMgBeGaO(20nm)/Ag(10nm)/ZnMgBeGaO(20nm) structure exhibited an electrical resistivity of ${\sim}2.6{\times}10^{-5}{\Omega}cm$ (after annealing), energy bandgap of ~3.75 eV, and optical transmittance of 65 % ~ 95 % over the visible wavelength range, representing a significant improvement in characteristics versus previously reported transparent conductive materials.

Keywords

References

  1. F. Larsson, J. Keller, M. Edoff and T. Torndahl, Thin Solid Films, 633, 235 (2017). https://doi.org/10.1016/j.tsf.2016.09.015
  2. B. Yang, C. Yao, Y. Yu, Z. Li and X. Wang, Sci. Rep., 7, 1 (2017). https://doi.org/10.1038/s41598-016-0028-x
  3. K. Ellmer, Nat. Photonics, 6, 809 (2012). https://doi.org/10.1038/nphoton.2012.282
  4. D. J. Cohen, K. C. Ruthe and S.A. Barnett, J. Appl. Phys., 96, 459 (2004). https://doi.org/10.1063/1.1760239
  5. K. Matsubara, H. Tampo, H. Shibata, A. Yamada, P. Fons, K. Iwata and S. Niki, Appl. Phys. Lett., 85, 1374 (2004). https://doi.org/10.1063/1.1784544
  6. J. H. Park, H. B. Cuong, S. H. Jeong and B. T. Lee, J. Alloy Compd., 615, 126 (2014). https://doi.org/10.1016/j.jallcom.2014.06.148
  7. C. Yang, X. M. Li, Y. F. Gu, W. D. Yu, X. D. Gao and Y. W. Zhang, Appl. Phys. Lett., 93, 112114 (2008). https://doi.org/10.1063/1.2987420
  8. H. B. Cuong, C. S. Lee and B. T. Lee, Thin Solid Films, 573, 95 (2014). https://doi.org/10.1016/j.tsf.2014.11.006
  9. V. Sharma, P. Kumar, A. Kumar, K. Asokan and K. Sachdev, Sol. Energy Mater. Sol. Cells, 169, 122 (2017). https://doi.org/10.1016/j.solmat.2017.05.009
  10. A. Bingel, O. Stenzel, P. Naujok, R. Muller, S. Shestaeva, M. Steglich, U. Schulz, N. Kaiser and A. Tunnermann, Opt. Mater. Express, 6, 3217 (2016). https://doi.org/10.1364/OME.6.003217
  11. Y. S. Park, H. K. Kim and S. W. Kim, J. Electrochem. Soc., 157, 301 (2010).
  12. N. M. Le and B. T. Lee, ACS Appl. Mater. Interfaces, 9, 32316 (2017). https://doi.org/10.1021/acsami.6b16404
  13. J. A. Jeong and H. K. Kim, Sol. Energy Mater. Sol. Cells, 93, 1801 (2009). https://doi.org/10.1016/j.solmat.2009.06.014
  14. J. H. Kim, H. K. Lee, J. Y. Na, S. K. Kim, Y. Z. Yoo and T. Y. Seong, Ceram. Int., 41, 8059 (2015). https://doi.org/10.1016/j.ceramint.2015.03.002
  15. H. Han, N. D. Theodore and T. L. Alford, J. Appl. Phys., 103, 013708 (2008). https://doi.org/10.1063/1.2829788
  16. J. Gong, R. Dai, Z. Wang and Z. Zang, Sci. Rep., 5, 9279 (2015). https://doi.org/10.1038/srep09279
  17. N. M. Le and B. T. Lee, Ceram. Int., 42, 5258 (2016). https://doi.org/10.1016/j.ceramint.2015.12.053
  18. J. A. Sans, J. F. Sanchez-Royo, A. Segura, G. Tobias and E. Canadell, Phys. Rev. B: Condens. Matter., 79, 195105 (2009). https://doi.org/10.1103/PhysRevB.79.195105
  19. Y. S. Jung, Y. W. Choi, H. C. Lee and D. W. Lee, Thin Solid Films, 440, 278 (2003). https://doi.org/10.1016/S0040-6090(03)00835-6
  20. D. R. Sahu, C. Y. Chen, S. Y. Lin and J. L. Huang, Thin Solid Films, 515, 932 (2006). https://doi.org/10.1016/j.tsf.2006.07.061
  21. C. Guillen and J. Herrero, Thin Solid Films, 520, 1 (2011). https://doi.org/10.1016/j.tsf.2011.06.091

Cited by

  1. Effect of Carbon Contents on Corrosion and Hydrogen Diffusion Behaviors of Ultra-Strong Steels for Automotive Applications vol.56, pp.8, 2018, https://doi.org/10.3365/KJMM.2018.56.8.570