DOI QR코드

DOI QR Code

Process Design and Simulation of Fast Pyrolysis of Brown Seaweed

갈조류 급속열분해 공정의 모사와 설계

  • Brigljevic, Boris (Department of Chemical Engineering, Pukyong National University) ;
  • Woo, Hee Chul (Department of Chemical Engineering, Pukyong National University) ;
  • Liu, Jay (Department of Chemical Engineering, Pukyong National University)
  • ;
  • 우희철 (부경대학교 화학공학과) ;
  • 유준 (부경대학교 화학공학과)
  • Received : 2017.09.07
  • Accepted : 2017.10.05
  • Published : 2017.12.31

Abstract

Fast pyrolysis of third generation biomass, including micro- and macroalgae for biofuel production has recently been studied and compared experimentally to first- and second-generation biomass. Compared to microalgae, however, process design and simulation study of macroalgae for scale-up has been rare in literature. In this study, we designed and simulated an industrial scale process for producing diesel range biofuel from brown algae based on bench scale experimental data of fast pyrolysis using a commercial process simulator. During process design, special attention was paid to the process design to accommodate the differences in composition of brown algae compared to terrestrial biomass. The entire process of converting 380,000 tonnes of dry brown algae per year into diesel range biofuel was economically evaluated and the minimum (diesel) selling price was also estimated through techno-economic analysis.

바이오 연료 생산을 위한 3세대 바이오매스, 즉 미세조류 및 거대조류의 급속 열분해는 최근 1 세대 및 2 세대 바이오매스와 비교하여 실험적으로 연구된 바 있다. 하지만 거대조류의 경우 스케일업을 위한 공정모사 및 공정설계 연구는 거의 전무한 실정이다. 이 연구에서는 갈조류 급속 열분해의 벤치 스케일 실험 데이터에 근거하여 갈조류로부터 최종적으로 디젤을 생산하는 산업 규모의 공정을 상용 공정모사기를 이용하여 설계하고 모사하였다. 이때 육상 바이오매스 대비 갈조류의 조성 차이를 수용하기 위해 공정 설계에 특별한 주의를 기울였다. 연간 380,000톤의 건조 갈조류 원료를 바이오 디젤로 전환하는 전체 공정을 경제적으로 평가하고 최소 (디젤) 판매 가격 또한 산정하였다.

Keywords

References

  1. Owen, N. A., Inderwildi, O. R., and King, D. A., "The Status of Conventional World Oil Reserves - Hype or Cause for Concern?," Energy Policy, 38 4743-4749 (2010). https://doi.org/10.1016/j.enpol.2010.02.026
  2. Rowbotham, J. S., Dyer, P. W., Greenwell, H. C., and Theodorou, M. K., "Thermochemical Processing of Macroalgae: a Late Bloomer in the Development of Third-Generation Biofuels?," Biofuels, 3, 441-461 (2012). https://doi.org/10.4155/bfs.12.29
  3. Giampietro, M. and Mayumi, K., The Biofuel Delusion: The Fallacy of Large Scale Agro-Biofuels Production, 1st ed., Routledge, London, 69-104 (2009).
  4. MacKay, D. J. C., Sustainable Energy - without the Hot Air, UIT Cambridge (2009).
  5. Mitchell, D., "A Note on Rising Food Prices," World Bank, Washington, DC. Policy Research Working Paper No. 4682. (2008).
  6. Gao, Kunshan, and McKinley, K. R., "Use of Macroalgae for Marine Biomass Production and $CO_2$ Remediation: A Review," J. Appl. Phycol., 6, 45-60 (1994). https://doi.org/10.1007/BF02185904
  7. Adams, J. M., Ross, A. B., Anastasakis, K., Hodgson, E. M., Gallagher, J. A., Jones, J. M., Donnison, I. S., "Seasonal Variation in the Chemical Composition of the Bioenergy Feedstock Laminaria Digitata for Thermochemical Conversion," Bioresour. Technol., 102, 226-234 (2011). https://doi.org/10.1016/j.biortech.2010.06.152
  8. Suutari, M., Leskinen, E., Fagerstedt, K., Kuparinen, J., Kuuppo, P., and Blomster, J., "Macroalgae in Biofuel Production," Phycol. Res., 63, 1-18 (2015). https://doi.org/10.1111/pre.12078
  9. Roesijadi, G., Jones, S. B., Snowden-Swan, L. J., and Zhu, Y., "Macroalgae as a Biomass Feedstock: a Preliminary Analysis," Pacific Northwest National Laboratory (PNNL), Richland, WA, Report No. PNNL-19944 (2010).
  10. Milledge, J. J., Smith, B., Dyer, P. W., and Harvey, P., "Macroalgae-Derived Biofuel: A Review of Methods of Energy Extraction from Seaweed Biomass," Energies, 7, 7194-7222 (2014). https://doi.org/10.3390/en7117194
  11. Ross, A. B., Jones, J. M., Kubacki, M. L., Bridgeman, T., "Classification of Macroalgae as Fuel and its Thermochemical Behaviour," Bioresour. Technol., 99, 6494-6504 (2008). https://doi.org/10.1016/j.biortech.2007.11.036
  12. Li, D., Chen, L., Yi, X., Zhang, X., and Ye, N., "Pyrolytic Characteristics and Kinetics of two Brown Algae and Sodium Alginate," Bioresour. Technol., 101, 7131-7136 (2010). https://doi.org/10.1016/j.biortech.2010.03.145
  13. Wang, J., Wang, G., Zhang, M., Chen, M., Li, D., Min, F., Chen, M., Zhang, S., Ren, Z., and Yan, Y., "A Comparative Study of Thermolysis Characteristics And Kinetics of Seaweeds and Fir Wood," Process Biochem., 41, 1883-1886 (2006). https://doi.org/10.1016/j.procbio.2006.03.018
  14. Goyal, H. B., Diptendu S., and Saxena, R. C., "Bio-Fuels from Thermochemical Conversion of Renewable Resources: a Review," Renew. Sust. Energ. Rev., 12, 504-517 (2008). https://doi.org/10.1016/j.rser.2006.07.014
  15. Rutz, D., and Rainer J., Biofuel Technology Handbook, WIP Renewable energies (2007).
  16. Luque, R., and James C., eds. Handbook of Biofuels Production: Processes and Technologies, Elsevier (2010).
  17. Haveren, J., Elinor L. S,, and Johan S., "Bulk Chemicals from Biomass," Biofuel. Bioprod. Bior., 2, 41-57 (2008). https://doi.org/10.1002/bbb.43
  18. Vispute, T. P., Zhang, H., Sanna, A., Xiao, R., and Huber, G. W., "Renewable Chemical Commodity Feedstocks from Integrated Catalytic Processing of Pyrolysis Oils," Science, 330, 1222-1227 (2010). https://doi.org/10.1126/science.1194218
  19. Choi, J. H., "Pyrolysis and Catalytic Upgrading of Macroalgal Biomass for Liquid Biofuel Production," Ph.D. Dissertation, Pukyong National University, Busan (2015).
  20. Turton, R., Bailie, R. C., Whiting, W. B., and Shaeiwitz, J. A., Analysis, Synthesis and Design of Chemical Processes. 3rd ed. Prentice Hall, New York, 163-198 (2008).
  21. Jones, S. B., Meyer, P. A., Snowden-Swan, L. J., Padmaperuma, A. B., Tan, E., Dutta, A., Jacobson, J., and Cafferty, K., "Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels: Fast Pyrolysis and Hydrotreating Bio-Oil Pathway," NREL/TP-5100-61178. Pacific Northwest National Laboratory (PNNL), Report No. PNNL-23053 (2013).