Korean J. Math. **25** (2017), No. 4, pp. 579–585 https://doi.org/10.11568/kjm.2017.25.4.579

WEAK INJECTIVITY IN THE CATEGORY OF NORMAL FUZZY HYPERGROUPS

IG SUNG KIM

ABSTRACT. Based on injectivity, we introduce some definitions in the category **NFHG** of normal fuzzy hypergroups. And we show that a complete normal fuzzy hypergroup is a weakly injective object in **NFHG**. Also we investigate weak injectivity in the comma category **NFHG**/K.

1. Introduction

Banaschwski [1] investigated injectivity in the category **B** with some properties and Cagliari [3] investigated injectivity in the comma category **C**/A. Also Sun [6] introduced some properties of the category of normal fuzzy hypergroups. In this paper, we introduce some definitions in **NFHG**. And we show that a complete normal fuzzy hypergroup is a weakly injective object in **NFHG**. Also we show that an object $f : X \to K$ in **NFHG** /K is a weakly injective object if and only if $f^{-1}(k)$ is weakly injective in **NFHG** for all $k \in K$ and $\langle i, f \rangle$ has a left inverse in **NFHG**/K.

Received August 17, 2017. Revised December 15, 2017. Accepted December 19, 2017.

²⁰¹⁰ Mathematics Subject Classification: 18B25.

Key words and phrases: normal fuzzy hypergroup, complete element, weakly injective object.

[©] The Kangwon-Kyungki Mathematical Society, 2017.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

2. Preliminaries

In this section, we state some definitions and properties which will serve as the basic tools for the arguments used to prove our results.

Let H be a nonempty set and $F(H) = [0, 1]^H$ be the set of all fuzzy subset of H and $F^*(H) = F(H) - \{\phi\}$. A fuzzy hyperoperation on H is a mapping $\star : H^2 \to F(H)$ and the couple (H, \star) is called a partial fuzzy hypergroupoid. If the fuzzy hyperoperation \star maps H^2 into $F^*(H)$, then (H, \star) is called a fuzzy hypergroupoid.

DEFINITION 2.1. (1) A fuzzy semihypergroup is a fuzzy hypergroupoid (H, \star) which satisfies the associative law.

(2) A fuzzy quasihypergroup is a fuzzy hypergroupoid (H, \star) which satisfies the reproductive law.

(3) A fuzzy hypergroup is a fuzzy semihypergroup which is also a fuzzy quasihypergroup

(4) A fuzzy subhypergroup (A, \bullet) of a fuzzy hypergroup (B, \bullet) is a nonempty subset $A \subseteq B$ such that for any $a \in A$, $a \bullet A = A = A \bullet a$.

DEFINITION 2.2. A fuzzy hypergroup (H, \star) is said to be *normal* if it satisfies the following three conditions:

(1) $(x \star x)(x) = 1$ for all $x \in H$; (2) $x \star y = x \star x \cup y \star y$ for all $x, y \in H$; (2) $(x \star y) = (x \star x) \cup (y \star y)$ for all $(x, y) \in H$;

(3) $(x \star x)(z) \ge (x \star x)(y) \land (y \star y)(z)$ for all $x, y, z \in H$.

Let **NFHG** be a category, where objects are normal fuzzy hypergroups and a morphism from (H, \diamond) to (K, \star) is a mapping $f : H \to K$ such that $f(a \diamond b) \subseteq f(a) \star f(b)$.

DEFINITION 2.3. Let $(H, \star) \in Ob(\mathbf{NFHG})$. $a \in (H, \star)$ is called a *complete element* if $x \star a = a \star x = H$ for all $x \in H$. And (H, \star) is called a *complete normal fuzzy hypergroup* if there is a complete element in (H, \star) .

DEFINITION 2.4. $I \in Ob(NFHG)$ is said to be *weakly injective* if, for any monomorphism $m : A \to B$ with $m(a \circ b) = m(a) \circ m(b)$ and any morphism $n : A \to I$, there exists a morphism $f : B \to I$ such that $f \circ m = n$.

580

3. Weak Injectivity

THEOREM 3.1. A complete normal fuzzy hypergroup is weakly injective in **NFHG**.

Proof. Let $m : A \to B$ be a monomorphism such that $m(a \circ b) = m(a) \circ m(b)$. For any $g : A \to C$ where C is a complete normal fuzzy hypergroup, there is a morphism $h : B \to C$ where

$$h(b) = \begin{cases} g(a), b = m(a) \\ c, otherwise \end{cases}$$

with c is a complete element in C. Then $h \circ m = g$, that is, the following diagram

$$\begin{array}{ccc} A & \stackrel{m}{\longrightarrow} & B \\ g \downarrow & & \downarrow h \\ C & \stackrel{i}{\longrightarrow} & C \end{array}$$

commutes, since $h \circ m(a) = h(m(a)) = g(a)$. And if $p, q \in Im(m)$, then we have that

$$\begin{aligned} h(p \circ q) &= h(m(u) \circ m(v)) = h(m(u \circ v)) = g(u \circ u) \\ &\subseteq g(u) \circ g(v) = h(m(u)) \circ h(m(v)) = h(p) \circ h(q). \end{aligned}$$

So we get $h(p \circ q) \subseteq h(p) \circ h(q)$.

Also, if p or q is not an element of Im(m), that is, h(p) = c or h(q) = c, then we have that $h(p) \circ h(q) = C$. So we get $h(p \circ q) \subseteq h(p) \circ h(q)$. \Box

COROLLARY 3.2. NFHG has enough weakly injective objects.

Proof. Let A be a normal fuzzy hypergroup. Then $A \cup \{c\}$, where c is a complete element, is the weakly injective object in **NFHG**. And there is a monomorphism $m : A \to (A \cup \{c\})$ such that $m(a \circ b) = m(a) \circ m(b)$ by [5].

THEOREM 3.3. Let $f : C \to K$ be an object such that $f(a \circ b) = f(a) \circ f(b)$ in **NFHG**/K. Then f is weakly injective in **NFHG**/K if and only if every monomorphism $m : C \to D$ such that $m(a \circ b) = m(a) \circ m(b)$, where $g \circ m = f$ with $g : D \to K$, has a left inverse in **NFHG**/K.

Proof. For sufficiency part, by given condition we get the following commutative diagram:

$$\begin{array}{ccc} C & \stackrel{m}{\longrightarrow} & D \\ i \downarrow & & \downarrow^{g} \\ C & \stackrel{f}{\longrightarrow} & K \end{array}$$

By hypothesis, there is a morphism $n: D \to C$ such that $n \circ m = i$ and $f \circ n = g$. Thus $m: C \to D$ has a left inverse. For the necessary part, let $s: X \to Y$ be a monomorphism such that $s(a \circ b) = s(a) \circ s(b)$ where the following diagram

$$\begin{array}{ccc} X & \stackrel{s}{\longrightarrow} & Y \\ g \downarrow & & \downarrow h \\ C & \stackrel{f}{\longrightarrow} & K \end{array}$$

commutes. Then f can be embedded into the weakly injective object $\pi_K : (C \cup \{c\}) \times K \to K$ with a monomorphism $\langle j, f \rangle : C \to (C \cup \{c\}) \times K$ where $\langle j, f \rangle (a) = (a, f(a))$ by [2, 5]. That is, the following diagram

$$\begin{array}{ccc} C & \xrightarrow{J} & K \\ \downarrow & & \downarrow i \\ (C \cup \{c\}) \times K & \xrightarrow{\pi_K} & K \end{array}$$

c

commutes. Since π_K is the weakly injective object, there is a morphism $n: Y \to (C \cup \{c\}) \times K$ such that $\pi_K \circ n = h$ and $n \circ s = \langle j, f \rangle \circ g$. Also by hypothesis, there is a morphism $q: (C \cup \{c\}) \times K \to C$ such that $f \circ q = \pi_K$ and $q \circ \langle j, f \rangle = i$. Now $q \circ n: Y \to C$ is a morphism with $f \circ (q \circ n) = \pi_K \circ n = h$ and $(q \circ n) \circ s = q \circ (\langle j, f \rangle \circ g) = g$. \Box

THEOREM 3.4. $f : X \to K$ is weakly injective in NFHG/K if and only if the following two conditions are satisfied.

 $(1) < i, f >: X \to X \times K$ has a left inverse in **NFHG**/K.

(2) the normal fuzzy subhypergroup $f^{-1}(k) = \{x \in X | f(x) = k\}$ is weakly injective in **NFHG** for all $k \in K$.

Proof. For sufficiency part, since $\langle i, f \rangle \colon X \to X \times K$, where $i \colon X \to X$ and $f \colon X \to K$, is a regular monomorphism by [3], $\langle i, f \rangle$

582

is also a monomorphism. By the definition of the product, we get the following commutative diagram:

$$\begin{array}{cccc} X & \stackrel{\langle i, f \rangle}{\longrightarrow} & X \times K \\ i \downarrow & & \downarrow \pi_K \\ X & \stackrel{}{\longrightarrow} & K \end{array}$$

By hypothesis, there is a morphism $r : X \times K \to X$ such that $r \circ \langle i, f \rangle = i$ and $f \circ r = \pi_K$. Thus $\langle i, f \rangle : X \to X \times K$ has a left inverse in **NFHG**/K. Let $m : C \to D$ be a monomorphism with $m(a \circ b) = m(a) \circ m(b)$ and $g : C \to f^{-1}(k)$ be a morphism where $f : X \to K$. Since **NFHG**/K is cartesian closed by [6], by adjunction, there is a morphism $h : C \times K \to X$ such that $f \circ h = \pi_K$. So we get the following commutative diagram:

$$\begin{array}{cccc} C \times K & \xrightarrow{(m \times i)} & D \times K \\ & & & & & \downarrow \\ h & & & & \downarrow \\ h & & & & \downarrow \\ & & & & \downarrow \\ X & \xrightarrow{f} & & K \end{array}$$

commutes. Since $f: X \to K$ is weakly injective in **NFHG**/K, there is a morphism $l: D \times K \to X$ such that $l \circ (m \times i) = h$ and $f \circ l = \pi_K$. Thus by adjunction, there is a morphism $n: D \to f^{-1}(k)$ such that $n \circ m = g$. That is, the diagram

$$\begin{array}{ccc} C & \xrightarrow{m} & D \\ g \downarrow & & \downarrow^n \\ f^{-1}(k) & \xrightarrow{i} & f^{-1}(k) \end{array}$$

commutes. So $f^{-1}(k)$ is weakly injective in **NFHG**.

For the necessary part, since $f^{-1}(k) \subseteq X$ is weakly injective in **NFHG**, $\pi_K : f^{-1}(k) \times K \to K$ is weakly injective in **NFHG**/K. So for any monomorphism $m : C \to D$ with $m(u \circ v) = m(u) \circ m(v)$,

 $g: C \to f^{-1}(k) \times K$ and $h: D \to K$ such that the diagram

$$\begin{array}{ccc} C & \xrightarrow{m} & D \\ g \downarrow & & \downarrow^{h} \\ f^{-1}(k) \times K & \xrightarrow{\pi_{K}} & K \end{array}$$

commutes, there is a morphism $n: D \to f^{-1}(k) \times K$ such that $h \circ m = \pi_K \circ g$, $n \circ m = g$ and $\pi_K \circ n = h$. Also for any morphism $\langle i, f \rangle \colon X \to X \times K$, there is a morphism $s' \colon X \times K \to X$ such that $s' \circ \langle i, f \rangle = i$. Let $s'_{|f^{-1}(k) \times K} = s$. So we get $s \circ \langle i, f \rangle = i(x)$ for all $x \in f^{-1}(k)$. That is, s(x, f(x)) = x for all $x \in f^{-1}(k)$. Thus $f \circ s = \pi_K$, since $f \circ s(x, k) = f(x) = k = \pi_K(x, k)$ where $x \in f^{-1}(k)$ and $k \in K$. To show that $f \colon X \to K$ is weakly injective in **NFHG**/K, consider the diagram

$$\begin{array}{ccc} C & \xrightarrow{m} & D \\ s \circ g \downarrow & & \downarrow h \\ X & \xrightarrow{f} & K \end{array}$$

where $m: C \to D$ is a monomorphism with $m(u \circ v) = m(u) \circ m(v)$, $s \circ g: C \to X$ and $h: D \to K$. Since $f \circ s = \pi_K$ and $\pi_K \circ g = h \circ m$, we get $f \circ s \circ g = h \circ m$. Then there is a morphism $s \circ n: D \to X$ such that $s \circ n \circ m = s \circ g$ and $f \circ s \circ n = h$, since $n \circ m = g$, $f \circ s = \pi_K$ and $\pi_K \circ n = h$. Therefore $f: X \to K$ is weakly injective in **NFHG**/K. \Box

COROLLARY 3.5. For $f : C \to K$ such that $f(a \circ b) = f(a) \circ f(b)$ in **NFHG**/K, the followings are equivalent.

(1). f is weakly injective in \mathbf{NFHG}/K .

(2). Every monomorphism $m : C \to D$ such that $m(a \circ b) = m(a) \circ m(b)$, where $g \circ m = f$ with $g : D \to K$, has a left inverse in **NFHG**/K.

(3). $\langle i, f \rangle : C \to C \times K$ has a left inverse in **NFHG**/K and the normal fuzzy subhypergroup $f^{-1}(k) = \{x \in C | f(x) = k\}$ is weakly injective in **NFHG**.

References

B. Banaschewski, *Injectivity and modelling in the Blass topos*, J. Pure and Applied Algebra 49 (1987), 1–10.

584

- F. Cagliari and S. Mantovani, *Injective topological fibre spaces*, Topology Appl. 125 (3) (2002), 525–532.
- [3] F. Cagliari and S. Mantovani, *Injectivity and sections*, J. Pure and Applied Algebra 204 (2006), 79–89.
- [4] R. Goldblatt, *Topoi*, North-Holland, 1984.
- [5] F. Farsad and A. Mandanshekaf, Regular injectivity and exponentiablity in the slice categories of actions of pomonoid on posets, K.M.S (2015), 67–80.
- [6] K. Sun, X. H. Yuan, and H. Li, *Fuzzy hypergroups based on fuzzy relation*, Comput. Math. Appl, (2010).

Department of Data Information Sangji University Wonju 26339, Korea *E-mail*: iskim@sangji.ac.kr