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(CO)RETRACTABILITY AND (CO)SEMI-POTENCY
Hamza HAKMI

ABSTRACT. This paper is a continuation of study semi-potentness
endomorphism rings of module. We give some other characteriza-
tions of endomorphism ring to be semi-potent. New results are ob-
tained including necessary and sufficient conditions for the endomor-
phism ring of semi(injective) projective module to be semi-potent.
Finally, we characterize a module M whose endomorphism ring it is
semi-potent via direct(injective) projective modules. Several proper-
ties of the endomorphism ring of a semi(injective) projective module
are obtained. Besides to that, many necessary and sufficient condi-
tions are obtained for semi-projective, semi-injective modules to be
semi-potent and co-semi-potent modules.

1. Introduction.

Throughout in this paper R will be an associative ring with identity
and all modules are unitary right R—modules. For a ring R, we write
J(R) for the Jacobson radical of R, and for a module M we denote J(M)
for the Jacobson radical of M. By notations, N <, M, N < M we mean
that N is a large (essential) submodule and a small submodule of M,
respectively. We denote S = Endgr(M) the endomorphism ring for an
R—module M.

The concept Iy—rings or semi-potent rings, was first introduced by
Nicholson [6] in 1975, and has been extensively studied by Tuganbaev,
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Kasch, Hamza, and others (see for example [5] and [8]). For example,
Hamza in [4] shows that every projective module P over a semi-potent
ring is semi-potent, i.e. any submodule of P not contained in J(P) con-
tains a nonzero direct summand of P. In the study of the concept semi-
potency, one of the interesting questions is when the endomorphism ring
of some module is semi-potent. Toward this question, many results have
been obtained. In section 2, we study the semi-potentness of the endo-
morphism ring of a module, several necessary and sufficient conditions
for the endomorphism ring of a module to be semi-potent are given.
In section 3, we studied semi-potentness endomorphism ring of semi-
(injective) projective modules. It is proved that endomorphism ring of
semi-projective module M is semi-potent if and only if Im(a) contains a
nonzero direct summand of M for every a € S\ J(5). Also, it is proved
that endomorphism ring of semi-injective module M is semi-potent if
and only if Ker(a) is contained in a direct summand N # M of M for
every o € S\ J(S). In section 4, we characterize the module M for which
endomorphism ring of M is semi-potent in cases J(S) =0, J(S) = VS
and J(S) = AS. It is proved that the endomorphism ring of a module
M is semi-potent and J(S) = 0 if and only if M is direct-projective
and for every 0 # a € S, Im(«) contains a nonzero direct summand
of M if and only if M is direct-injective and for every 0 # o € S,
Ker(a) is contained in a direct summand N # M of M. Also, it is
proved that the endomorphism ring of a module M is semi-potent and
J(S) = VS if and only if M is direct-projective and for every o € S
which I'm(«) is not small in M, contains a nonzero direct summand of M.
Finally, it is proved that the endomorphism ring of a module M is semi-
potent and J(S) = AS if and only if M is direct-injective and for every
a € S which Ker(a) is not large in M, is contained in a direct summand
N # M of M. In section 5, we study the semi-projective retractable and
the semi-injective co-retractable modules. We find that the concept of
retractability preserve semi-potency and co-semi-potency between the
semi-projective modules and the endomorphism ring of this modules.
While the concept of co-retractability dissent between semi-potency and
co-semi-potency for semi-injective modules and the endomorphism ring
of this modules.
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2. Semi-potent rings.

Recall that a ring R is a semi-potent ring, also called Iy—ring by
Nicholson [6] and Hamza [4], if every principal left (resp. right) ideal
not contained in J(R) contain a nonzero idempotent. For any non-empty
subset X of a ring R, we denote the left annihilator of X in R by ¢(X).
Similarly the right annihilator of X in R is denoted by r(X). Next we
present a characterization of semi-potent rings:

PROPOSITION 2.1. For any ring R the following statements are equiv-
alent:
(1) R is semi-potent.
(2) For every a € R\ J(R), b= bab for some 0 # b € R.
(3) For every a € R\ J(R), {(1 — ab) = Re for some 0 # b € R and
idempotent 0 # e € R.
(4) For every a € R\ J(R), (1 — ba) = Rg for some 0 # b € R and
idempotent 0 # g € R.
(5) For every a € R\ J(R) there exists a nonzero idempotent e € R such
that e € (1 — ab) for some 0 # b € R.
(6) For every a € R\ J(R) there exists a nonzero idempotent e € R such
that e € {(1 — ba) for some 0 # b € R.
(6 + 1) The left-right symmetry of (2+1),i=1,2,3,4.

Proof. (1) = (2). Let a € R\ J(R), then there exists 0 # e =e € R
such that e € aR. So e = az for some z € R. For b = zaz, b = bab and
0#beR.

(2) = (3). Let a € R\ J(R), then b = bab for some 0 # b € R. For
e =ab, {(1 —ab) ={(1 —e) = Re and so 0 # e € R is an idempotent.
(3) = (5). It is clear.

(5) = (1). Let @ € R\ J(R), then there exists 0 # b € R and idempotent
0 # e € R such that e € (1 — ab), so e = eab and be = (be)a(be).
For g = abe, g € aR is an idempotent. Similarly, we can prove that
()= (2)=4)=(6)=(1). O

THEOREM 2.2. Let Mg be a module and S = Endgr(M). Then the
following statements are equivalent:
(1) S is a semi-potent ring.
(2) For every a € S\ J(S) there exists € S such that Im(af) # 0 and
Ker(apf) # M are direct summands of M.
(2") For every o € S\ J(S) there exists v € S such that Im(ya) # 0
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and Ker(ya) # M are direct summands of M.

(3) For every a € S\ J(S) there exists § € S such that Im(1—af) # M
is a direct summand of M.

(3") For every a € S\ J(S) there exists v € S such that Im(1—~«a) # M
is a direct summand of M.

(4) For every a € S\ J(S) there exists § € S such that Ker(1 — af3) is
a nonzero direct summand of M.

(4") For every v € S\ J(S) there exists v € S such that Ker(1 —vya) is
a nonzero direct summand of M.

Proof. (1) < (2) < (2'). By [4, Theorem 2.2].
(1) = (3). Let @« € S\ J(S). Then by proposition 2.1 there exists
0 # B € S such that g = fafB. For e = af, 0 # e € S is an idempotent
and so Im(1 — af) = Im(1 —e) # M is a direct summand of M.
(3) = (1). Let a« € S\ J(S5), then by assumption there exists § € S
such that Im(1 — af) # M is a direct summand of M. Let e : M —
Im(1 — af) be the projection, then 1 # e € S is an idempotent. Since
for every v € M, x = af(z) + (1 — af)(x) implies e(z) = (1 — af)(x)
and so e =1 — aff. Therefore 1 —e = af and so 1 —e € S is a nonzero
idempotent.
(1) = (4). Let a« € S\ J(S). Then by proposition 2.1 there exists
0 # B € S such that g = paf. For e = aff, 0 # e € S is an idempotent
and so Ker(1 —af) = Ker(l —e) # 0 is a direct summand of M.
(4) = (1). Let a € S\ J(S5), then by assumption there exists § € S
such that Ker(l — af) # 0 is a direct summand of M. Let e : M —
Ker(1—af3) be the projection. Then e € S is a nonzero idempotent and
Im(e) = Ker(1 — af). So (1 — af)e = 0 which implies e = aff € as,
thus S is semi-potent. m

THEOREM 2.3. Let M be a module and S = Endgr(M). Then the
following statements are equivalent:
(1) S is a semi-potent ring.
(2) For every a € S\ J(S) there exists 3 € S such that Im(1 — af3)
contained in a direct summand N # M of M.
(2") For every a € S\ J(S) there exists v € S such that Im(1 — y«)
contained in a direct summand N # M of M.
(3) For every a € S\ J(S) there exists € S such that Ker(l — af)
contains a nonzero direct summand of M.
(3") For every a € S\ J(S) there exists v € S such that Ker(l — ya)
contains a nonzero direct summand of M.
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Proof. (1) = (2). Is similar to the prove of (1) = (3) of the Theorem
2.2. (2) = (1). Let « € S\ J(S). By assumption there exists a direct
summand N # M of M such that Im(1—af) C N. Let 7 : M — N the
projection, then for every m € M, n(1—af)(m) = (1—af)(m), therefore
7(l—apf)=1—af and so (1 —m)af =1—m, 1 —m # 0 which implies
that (1 —m)af(l —7) =1 — 7 and so (1 — m)af(l —7) = B(1 — 7).
Let p = B(1 — m), then p € S, pap = p, moreover p # 0, if p = 0,
l—-7m=(1-map(l —7)=(1—-m)ap =0 a contradiction. Thus S is
semi-potent. Similarly we can prove the equivalent (1) < (2).

(1) = (3). Let « € S\ J(S). By proposition 2.1 § = Safs for some
0#pB€S. Fore=ap, e € S is anonzero idempotent and so Ker(1 —
af) = Ker(1 —e) # 0 is a direct summand of M.

(3) = (1). Let a € S\ J(S). By assumption there exists a direct
summand K # 0 of M such that K C Ker(l — af) for some g € S.
Let 7 : M — K be the projection, then 7 # 0 and Im(r) = K C
Ker(1—ap), therefore (1—af)m = 0 and so 7 = afpm, B = (B7)a(f7).
Let p = fm, then p € S and that u = pap, p # 0 hence if p = 0,
m = afnt = apu = 0 a contradiction. Thus S is semi-potent. Similarly
we can prove the equivalent (1) < (3). O

Let Mg be a module and S = Endg(M). The co-singular ideal of
Sis VS ={a:a € S;Im(a) < M} and the singular ideal of S is
AS ={a:a e S;Ker(a) <. M}. Toward this ideals we define:

VS={a:aeS;Im(l—aB)=Mforall € M}

AS={a:aeS:Ker(l—af)=0forall 8 e M}

Since for each o, f € S, Im(1 —af) = M if and only if Im(1— fa) =
M and also, Ker(1 — af) =0 if and only if Ker(1 — fa) =0,

VS ={a:acS;Im(l—pBa)=M forall 3 € M}

AS={a:aecS:Ker(l—Ba)=0forall 8 € M}
there is relation ship between the substructures V.S, VS, AS , AS, J (9)

of S we derive in the following:

LEMMA 2.4. Let Mg be a module and S = Endg(M). Then:
(1) VS C VS and AS C AS.
(2) J(S) C VS and J(S) C AS.
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Proof. (1). Let o € VS. Since for each f € S, M = Im(a) + Im(1 —
af) = Im(l —ap), so a € VS. Let a € AS. Since for each g es,
Ker(a) N Ker(1 — Ba) = 0, Ker(1 — Ba) = 0, so a € AS. (2) it is
clear. O

LEMMA 2.5. [9, Lemma 3.1] Let My be a module and o € S =
Endgr(M). Then the following are equivalent:
(1) There exists 5 € S such that o = afa
(2) Im(«) and Ker(«) are direct summand of M.

3. Semi-projective (injective) modules.

Recall that a module Mg is semi-projective [10], if for every sub-
module N of M and every epimorphism « : M — N, homomorphism
A: M — N there exists § € Endr(M) such that aff = .

LEMMA 3.1. [7, Theorem 2.7]. Let My be a module and S = Endgr(M).
Then the following statements are equivalent:
(1) The module M is semi-projective.
(2) For every v € S, oS = Hompg(M, Im(«)).
(3) If for a, B € S, Im(a)) € Im(fB), then aS C S.

LEMMA 3.2. Let Mg be a semi-projective module and S = Endg(M).
Then VS C J(S)=VS.

Proof. By Lemma 2.4 we have J(S) C VS. Let a € VS, then for
every 5 € S Im(l—af) = M. Since M is semi-projective (1—af)\ = 1y
for some A € S, s0o a € J(95). O

PRoOPOSITION 3.3. Let Mg be a semi-projective module and S =
Endgr(M). Then the following are equivalent:
(1) The ring S is semi-potent.
(2) For every v € S'\ J(S), Im(vya) is a nonzero direct summand of M
for some v € S.
(3) For every o € S\ J(S), Im(ap) is a nonzero direct summand of M
for some 3 € S.

(4) For every a € S'\ J(S), Im(«) contains a nonzero direct summand
of M.

Proof. (1) = (2). By Theorem 2.2. (2) = (3). Let « € S\ J(5), then
by assumption Im(ya) is a nonzero direct summand of M, so Im(ya) =
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Im(e) for some nonzero idempotent e € S. Then by Lemma 3.1, yauS =
eS, hence is semi-projective. So yaA = e for some A € S and so e =
eyade therefor Aey = (Aey)a(Aey). For § = Aey we found that f =
PBap. Thus aff € S is a nonzero idempotent and so I'm(«af) is a nonzero
direct summand of M. (3) = (4). It is obvious. (4) = (1). Let a €
S\ J(S) and N be a nonzero direct summand of M, N C Im(a).
Suppose that e : M — N the projection, then e € S is a nonzero
idempotent and I'm(e) = N C Im(a) by Lemma 3.1 e € eS C aS, s0 S
is semi-potent. O

THEOREM 3.4. Let Mg be a semi-projective module and S = Endg(M).
Then the following statements are equivalent:
(1) The ring S is semi-potent and J(S) = VS.
(2) For every a € S which I'm(«) is not small in M, Im(«) contains a
nonzero direct summand of M.

Proof. (1) = (2). Let a € S with Im(«) is not small in M. Then
a & VS = J(S), by assumption 8 = faf for some 0 # 5 € S. Let e =
af3, then e € S is a nonzero idempotent and Im(e) = Im(af) C Im(a),
where I'm(e) # 0 is a direct summand of M.
(2) = (1). First we will prove that J(S) = VS. By Lemma 3.2 we have
VS C J(S). Let a € J(5). If a ¢ VS, Im(c) not small in M, by
assumption there exists a nonzero direct summand N of M such that
N C Im(«). Let e : M — N be the projection. Then e € S is a nonzero
idempotent and I'm(e) C I'm(a), by Lemma 3.1 e € eS C aS C J(5), so
e = 0 a contradiction, thus « € V.S and so J(S) = VS. Let a € S\ J(S).
Then there exists a nonzero direct summand N of M, N C I'm(«). Since
M is semi-projective e € aS where e : M — N the projection and so
0 # e € S is an idempotent, so S is semi-potent. H

From Theorem 3.4 we conclude the following:

COROLLARY 3.5. Let Mpr be a semi-projective module and S =
Endg(M). Then the following are equivalent:
(1) The ring S is semi-potent and J(S) = 0.
(2) For every nonzero o € S, Im(«a) contains a nonzero direct summand
of M.

Recall that a module Mg is semi-injective [7] if for every factor module
N of M and every monomorphism « : N — M, homomorphism A : N —
M there exists 8 € Endg(M) such that fa = .
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LEMMA 3.6. [10, p.260]. Let Mg be a module and S = Endg(M).
Then the following statements are equivalent:
(1) The module M is semi-injective.
(2) For every a € S, Sav = HomR(%(a), M).
(3) If for a, p € S, Ker(a) C Ker(f), then S C Sa.

LEMMA 3.7. Let Mg be a semi-injective module and S = Endg(M).
Then AS C J(S) = AS.

Proof. By Lemma 2.4 we have J(S) C AS. Let a € AS, then for
every f € S Ker(1—fa) = 0 that is 1)y — S is a monomorphism. Since
M is semi-injective A(1 — Sa) = 1), for some A € S, so a € J(S). O

PROPOSITION 3.8. Let Mg be a semi-injective module and S =
Endgr(M). Then the following are equivalent:
(1) The ring S is semi-potent.
(2) For every a € S\ J(95), Ker(ap) # M is a direct summand of M
for some g € S.
(3) For every a € S\ J(5), Ker(ya) # M is a direct summand of M
for some vy € S.
(4) For every o € S\ J(S), Ker(«) is contained in a direct summand of
N £ M of M.

Proof. (1) = (2). By Theorem 2.2. (2) = (3). Let a € S\ J(9).
Then by assumption Ker(af) # M is a direct summand of M for some
g € S. So Ker(af) = Im(e) for some idempotent 1 # e € S. By
Lemma 3.6, Saf = Se, hence M is semi-injective, so e = Aaf for
some A € S and so e = elafe, therefore fed = (Bel)a(fe)). For
v = feX € S we found that v = yay and 1 # ya € S is an idempotent,
so Ker(ya) # M is a direct summand of M. (3) = (4). It is obvious,
hence Ker(a) C Ker(ya). (4) = (1). Let a € S\ J(S) and N # M
be a direct summand of M, Ker(a) C N. Suppose that e : M — N
the projection, then 1 # e € S is an idempotent and Ker(a) C N =
Im(e) = Ker(1—e) by Lemma 3.6, 1 —e€ S(1—¢) C Saand1—e € §
is a nonzero idempotent, so S is semi-potent. O

THEOREM 3.9. Let Mg be a semi-injective module and S = Endg(M).
Then the following statements are equivalent:
(1) The ring S is semi-potent and J(S) = AS.
(2) For every a € S which Ker(«) is not large in M, Ker(«) contained
in a direct summand of N # M of M.
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Proof. (1) = (2). Let a € S with Ker(«) is not large in M. Then
a & AS = J(S), by assumption 8 = faf for some 0 # § € S. Let
e = Pa, then e € S is a nonzero idempotent and Ker(a) C Ker(e) =
Im(1—e). Since 1 —e # 1 is an idempotent, Im(1 —e) # M is a direct
summand of M.
(2) = (1). First we will prove that J(S) = AS. By Lemma 3.7 we have
AS C J(S). Let a € J(S). If a ¢ AS, Ker(a) is not large in M,
by assumption there exists a direct summand N # M of M such that
Ker(a) € N. Let e : M — N be the projection. Then 1 # e € S is
an idempotent and Ker(a) C N = Im(e) = Ker(1 — e) by Lemma 3.6,
l—e€ Sa C J(S),so1—e =0 a contradiction, thus a € AS and
so J(S) = AS. Let a« € S\ J(5). Then Ker(a) is not large in M, so
there exists a direct summand N # M of M, Ker(a) C N = Ker(1—g)
where g : M — N the projection. Since M is semi-injective 1 — g € a.S
and 0 # 1 — g € S is an idempotent, so S is semi-potent. O]

From Theorem 3.9 we conclude the following:

COROLLARY 3.10. Let Mg be a semi-injective module and S = Endgr(M).
Then the following are equivalent:
(1) The ring S is semi-potent and J(S) = 0.
(2) For every nonzero o € S, Ker(a) contained in a direct summand
N+ M of M.

4. Direct-projective (injective) modules.

Recall that a module Mg is direct-projective [10] if for every direct
summand N of M and every epimorphism « : M — N there exists
f € Endr(M) such that a8 = 7, where 7w : M — N the projection.
Following [10], A module My, is direct-projective if and only if for every
direct summand N of M and every epimorphism « : M — N, Ker(a)
is a direct summand of M.

LEMMA 4.1. Let Mg be a direct-projective module and S = Endgr(M).
Then VS C J(S)=VS.

Proof. By Lemma 2.4 we have J(S) C VS. Let a € VS, then for
every 5 € S Im(1—af) = M. Since M is direct-projective, (1 —af)\ =
1y for some A € S, so a € J(5). O
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THEOREM 4.2. Let Mg be a module and S = Endgr(M). Then the
following statements are equivalent:
(1) The ring S is semi-potent and J(S) = 0.
(2) The module M is direct-projective and for every 0 # « € S, I'm(vy«)
is a nonzero direct summand of M for some v € S.
(3) The module M is direct-projective and for every 0 # o € S, Im(af3)
is a nonzero direct summand of M for some § € S.
(4) The module M is direct-projective and for every 0 # a € S, Im(«)
contains a nonzero direct summand N of M.

Proof. (1) = (2). Let 0 # a € S. By assumption 8 = faf for
some 0 # § € S. Then e = aff € S is a nonzero idempotent and so
Im(af) # 0 is a direct summand of M. Now we will prove that M is
direct-projective. Let N be a direct summand of M and A : M — N
be an epimorphism. If N = 0, then Ker(\) = M is a direct summand
of M. Assume that N # 0, then A # 0 and by assumption u = pAu
for some 0 # p € S. Let e = A, then 0 # e € S is idempotent and
Im(e) C Im(X\) = N. Suppose that 7 : M — N be the projection. Since
for each m € M, m = e(m) + (1 —e)(m) and e(m) € N, w(m) = e(m),
thus 7 = e = A and so M is direct-projective. (2) = (3). Let 0 # a € S.
Then by assumption Im(y«a) is a nonzero direct summand of M for
some vy € S. Since M is direct-projective and ya : M — Im(vya) is an
epimorphism, Ker(ya) is a direct summand of M. So by Lemma 2.5
there exists g € S such that ya = (ya)g(ya). Let e = gya, then 0 #
e € S is an idempotent and ae = ae(gy)ae. Suppose that 5 = egy we
found that af = aegy € S is a nonzero idempotent, therefore I'm(af)
is a nonzero direct summand of M.

(3) = (4). It is clear.
(4) = (1). Let @« € S, a # 0. By assumption there exists a direct
summand N # 0 of M, N C Im(«). If 7 : M — N the projection, then
N = Im(r) = Im(wa). Since ma : M — N is an epimorphism and M is
direct-projective, Ker(ma) # M is a direct summand of M. By Lemma
2.5 ma = (ma)g(ma) for some g € S. Let e = mag, then e € S is a
nonzero idempotent. If a € J(S), e € J(S) a contradiction, so J(S) =0
and ger = (gem)a(ged), for p = gem, 0 # p € S and p = pau, so S is
semi potent. O
THEOREM 4.3. Let M be a module and S = Endgr(M). Then the

following statements are equivalent:
(1) The ring S is semi-potent and J(S) = VS.
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(2) The module M is direct-projective and for every ac € S which Im(c)
is not small in M, Im(«) contains a nonzero direct summand of M.

Proof. (1) = (2). Let @ € S which Im(a)is not small in M, then
a ¢ VS = J(5), so 8 = Baf for some 0 # 5 € S and Im(af) is
a nonzero direct summand of M, Im(af) C Im(«), hence 0 # af is
idempotent. Similarly as in Theorem 4.2 we can prove that M is direct-
projective.
(2) = (1). First we will prove that V.S = J(S5). Since M is direct-
projective, by Lemma 4.1 we have V.S C J(S). Let a € J(S5),ifa ¢ VS,
then I'm(«) is not small in M and by assumption I'm(«) contains direct
summand N # 0 of M. Let m : M — N be the projection, then
N = Im(r) = Im(ma). Since ma : M — N is an epimorphism and M is
direct-projective, there exists § € S such that (ra)8 = w. For p = afm,
0 # p € S is idempotent and pu € J(S), hence a € J(S) a contradiction,
so VS = J(S). By analogous as in Theorem 4.2 we can prove that S is
semi-potent. ]

Recall a module My, is direct-injective [10] if for every direct sum-
mand N of M and every monomorphism « : N — M there exists
B € Endgr(M) such that fa = 7 where 7 : N — M the inclusion.
Following [10], a module Mg is direct-injective if and only if every
monomorphism a : N — M, Im(«) is a direct summand of M.

LEMMA 4.4. Let My be a direct-injective module and S = Endg(M).
Then AS C J(S) = AS.

Proof. By Lemma 2.4 we have J(S) € AS. Let a € AS, then for
every € S Ker(l — pa) = 0. Since M is direct-injective, A(1 — fa) =
1y for some A € S, so a € J(5). O

THEOREM 4.5. Let My be a module and S = Endgr(M). Then the
following statements are equivalent:
(1) The ring S is semi-potent and J(S) = 0.
(2) The module M is direct-injective and for every 0 # o € S, Ker(af) #
M is a direct summand of M for some [ € S.
(3) The module M is direct-injective and for every 0 # a € S, Ker(ya) #
M is a direct summand of M for some v € S.
(4) The module M is direct-injective and for every 0 # a € S, Ker(«)
is contained in a direct summand N # M of M.
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Proof. (1) = (2). Let 0 # a € S. By assumption 5 = pag for

some 0 # f € S. Then e = aff € S is a nonzero idempotent and so
Ker(af) # M is a direct summand of M. Now we will prove that M
is direct-injective. Let N be a direct summand of M and oo : N — M
be a monomorphism, 7 : M — N be the projection, then 0 # am € S.
By assumption g = p(am)u for some 0 # p € S. Assume that e = Tua,
e € S is a nonzero idempotent and Im(e) C I'm(w) = N. Since for each
m € M, m = e(m)+ (1 —e)(m) implies that 7(m) = e(m), so for every
ye N,y=nmn(y) =ely) = mpa(y). Let mu = B, then fa = 7 where
7 : N — M the inclusion, thus M is direct-injective.
(2) = (3). Let 0 # a € S. Then by assumption Ker(af) # M is
a direct summand of M for some 8 € S, so Ker(af) = Im(e) where
1 # e € S is an idempotent. Assume that (af)y : Im(1 —e) — M the
restriction of af on Im(1 — e), then (af)y is a monomorphism. Since
M is direct-injective, there exists A € S such that A(af)y = 7, where
7 : Im(l1 —e) — M the inclusion. Let w : M — Im(1 — e) be the
projection. Then for every m € M,

AapB)m(m) = MapB)o(m(m)) = 7(x(m)) = w(m)

so Aafr = m and (BrA)a(frA) = BrA. Suppose that p = B, we
found that 0 # p € S such that p = pap, thus 0 # pa € S is an
idempotent and so Ker(ua) # M is a direct summand of M. (3) = (4).
It is clear, hence Ker(a) C Ker(ya).

(4) = (1). Let 0 # a € S, then Ker(a) # M by assumption Ker(a) C
N where N # M is a direct summand of M. So M = N @ K for some
submodule K # 0 of M. Suppose that ag : K — M the restriction of «
on K, then ag is monomorphism. Since M is direct injective, Sag = T
where 7 : K — M the inclusion. Let 7 : M — K be the projection, then
for every m € M, m(m) € K and so far(m) = Bag(m(m)) = 7(n(m)) =
mw(m), thus Sfar = 7. Let p = 7, then 0 # p € S such that pu = papu,
so ap € S is a nonzero idempotent. If a € J(S) a contradiction. Thus
J(S) =0 and S is semi-potent. O

THEOREM 4.6. Let Mg be a module and S = Endgr(M). Then the
following statements are equivalent:
(1) The ring S is semi-potent and J(S) = AS.
(2) The module M is direct-injective and for every a € S, which Ker(«)

is not large in M, Ker(«) is contained in a direct summand N # M of
M.
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Proof. (1) = (2). Let a € S, Ker(a) be not large in M. Then
by assumption o ¢ AS = J(S), by assumption § = faf for some
0# B €S, s0 fa € S is anonzero idempotent and so Ker(fa) # M
is a direct summand of M such that Ker(a) C Ker(fa). Now we will
prove that M is direct-injective. Let N be a direct summand of M,
a: N — M be a monomorphism and m : M — N be the projection,
then ar € S.

- If Ker(ar) is a large submodule in M, then Ker(rn) is large in M.
Because for any x € Ker(ar), ar(z) = 0 and so w(xz) = 0, hence « is
monomorphism. Therefore 7 € AS = J(S), so # = 0, hence 7° = 7.
Thus @ = 0, hence N = Im(n) = 0 and so Im(«a) = 0 is a direct
summand in M.

- Suppose that Ker(ar) is not large in M, then ar ¢ AS = J(S). Since
S is semi-potent, u = pu(am)u for some 0 # p € S. Let e = muan, then
e € S is a nonzero idempotent and Im(e) C Im(n) = N. Since for any
r € M, e(r) € N we found that m(x) = e(z) and so # = e. Thus for
every y € N, y = w(y) = e(y) = mpan(y) = mpa(y). Suppose that
B =mu € S, then follows that fa = 7 where 7 : N — M the inclusion,
this shows that M is direct-injective.

(2) = (1). First we will prove that AS = J(S). Since M is direct-
injective, by Lemma 4.4 we have AS C J(S5). Let a € J(5). If a &€ AS,
then Ker(a) is not large in M, by assumption Ker(a) contained in a
direct summand N # M of M, so M = N & K for some submodule
K #0of M. Let m: M — K be the projection, then Ker(a) C Ker(r)
and so St C Sa by Lemma 4.4, hence M is direct-injective. Thus
m = Aa for some A € S and so A = wAarA. Thus arA € S is a
nonzero idempotent and ar\ € J(S) a contradiction, thus AS = J(.5).
By analogous as in Theorem 4.5 we can prove that S is semi-potent. [

From Theorems 4.3 and 4.6 we conclude the following:

COROLLARY 4.7. Let Mg be a module and S = Endr(M), if J(S) =
VS = AS. Then the following statements are equivalent:
(1) The module M is direct-projective and for every ac € S which Im(c)
is not small in M, Im(«) contains a nonzero direct summand of M.
(2) The ring S is semi-potent.
(3) The module M is direct-injective and for every a € S which Ker(c)
is not large in M, Ker(«) is contained in a direct summand N # M of
M.
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Also, from Theorems 4.2 and 4.5 we conclude the following:

COROLLARY 4.8. Let Mg be a module and S = Endgr(M). Then the
following statements are equivalent:
(1) The module M is direct-projective and for every 0 # a € S, Im(y«)
is a nonzero direct summand of M for some v € S.
(2) The module M is direct-projective and for every 0 # o € S, Im(a/3)
is a nonzero direct summand of M for some 3 € S.
(3) The module M is direct-projective and for every 0 # « € S, Im(«)
contains a nonzero direct summand N of M.
(4) The ring S is semi-potent and J(S) = 0.
(5) The module M is direct-injective and for every 0 # o € S, Ker(«)
is contained in a direct summand N # M of M.
(6) The module M is direct-injective and for every 0 # o € S, Ker(vya) #
M is a direct summand of M for some vy € S.
(7) The module M is direct-injective and for every 0 # o € S, Ker(af) #
M is a direct summand of M for some ( € S.

5. (Co)semi-potent modules.

For every submodule N of a module Mz we use the notation N =
Hompg(M, N) which is a right ideal of S = Endg(M).

Recall that a module Mg is retractable [3], if for every nonzero sub-
module N of M, N # 0. It is clear that every free module and every
projective module P with J(P) = 0 are retractable modules.

LEMMA 5.1. Let Mgy be a semi-projective retractable module. Then
for every a € S = Endg(M) the following are equivalent:
(1) The right ideal S is large in S.
(2) The submodule Im(«) is large in M.

Proof. (1) = (2). Let U be a submodule of M such that Im(a)NU =
0. IfU # 0, U # 0 hence M is retractable. It is easy to see that
UnasS = 0. Since a§ is large in S, U = 0 a contradiction. So Im(a) is
large in M.
(2) = (1). Let I be a right ideal of S such that S NI = 0. Suppose

—

that I # 0, then I'm(8) # 0 for some 0 # 5 € I and Im(3) # 0 hence
M is retractable. Since M is semi-projective,

Hompg(M, Im(a) N Im(B)) = Homg(M, Im(«)) N Homg(M, Im(f)) =
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=aSNBSCaSNI=0

So Im(a) N Im(B) = 0. Since Im(«) is large in M, Im(5) = 0 and so
£ = 0 a contradiction, thus I = 0. O

LEMMA 5.2. Let Mgk be a semi-projective retractable module and
S = Endgr(M). Then the following are equivalent:
(1) For every o € S with oS is not large in S, aS is contained in a direct
summand K # S of S.
(2) For every a € S with I'm(«) is not large in M, Im(«) is contained
in a direct summand N # M of M.

Proof. 1t is clear by Lemma 5.1. [

Recall that a module My is semi-potent or In—module [4], if for every
submodule A & J(M) of M contains a nonzero direct summand of M.

THEOREM 5.3. Let My be a semi-projective module with J(M) =0
and S = Endgr(M). Then the following statements are equivalent:
(1) The module M is semi-potent.
(2) The module M is retractable and for every 0 # a € S, Im(«)
contains a nonzero direct summand of M.
(3) The module M is retractable and S is a semi-potent ring with J(S) =
0.

Proof. (1) = (2). Let A # 0 be a submodule of M. Since A Z J(M),
A contains a direct summand N # 0 of M. If e : M — N is the
projection, 0 # e € S is idempotent and e € A, so M is retractable. Let
0 # a € S, then Im(a) € J(M), so Im(a) contains a nonzero direct
summand of M.
(2) = (3). By corollary 3.5.
(3) = (1). Let A be a submodule of M and A € J(M) = 0. Since M
is retractable, A # 0 is a right ideal of 5. So there exists idempotent
0 # e € Sand e € A hence S is semi-potent and J(S) = 0. Thus,
Im(e) # 0 is a direct summand of M and Im(e) C A, so M is semi-
potent. ]

Recall that a module My is e—retractable [3], if for every nonzero
submodule N of M there exists epimorphism o : M — N. It is clear
that every e—retractable module is retractable.
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THEOREM 5.4. Let My be a semi-projective e—retractable module
with J(M) is small in M and S = Endg(M). Then the following state-
ments are equivalent:

(1) The module M is semi-potent.
(2) For every a € S with Im(a) not small in M, Im(a) contains a
nonzero direct summand of M.

(3) The ring S is semi-potent and J(S) = VS.

Proof. (1) = (2). Let a € S, Im(«) is not small in M. Since J(M) <
M, Im(a) € J(M) by assumption I'm(c) contains a nonzero direct
summand of M.

(2) = (3). By Theorem 3.4.

(3) = (1). Let A € J(M) be a submodule of M, then A # 0 and
A + 0 hence M is retractable. Also, the right ideal A Z J(S). Because
it ACJ (S) and hence M is e—retractable there is an epimorphism
A:M — Aof M,soxe AC J(S)=VS, thus A= Im(\) C J(M) a
contradiction. Since S is semi-potent there is idempotent 0 # e € S such
that e € A, so Im(e) # 0 is a direct summand of M and Im(e) C A,
thus M is semi-potent. O

Recall that a module M is co-semi-potent or I*—module [1], if every
not large submodule A of M is contained in a direct summand N # M of
M. Note that if for a module M, J(M) is small in M, then the concept
of I*—module is dual of Iy—module.

LEMMA 5.5. Let Mg be a nonzero e—retractable module and S =
Endgr(M). Then the following statements are equivalent:
(1) M is an I*—module.
(2) For every a € S with Im(«) not large in M, Im(«) is contained in
a direct summand N # M of M.

Proof. (1) = (2). Obvious. (2) = (1). Let A be a not large submodule
of M. If A =0, then A is a direct summand of M. Suppose that A # 0,
since M is e—retractable, there is an epimorphism A : M — A. On the
other hand, Ais not large in Sg, hence if Alis large follows that A is large

in M. So by assumption A = Im(\) is contained in a direct summand
N # M of M. O

THEOREM 5.6. Let My be a semi-projective e—retractable module
and S = Endgr(M). Then the following statements are equivalent:
(1) The module M is I*— module.
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(2) For every a € S with Im(«) not large in M, Im(«) contained in a
direct summand N # M of M.

(3) For every a € S with oS not large in S, aS contained in a direct
summand I # S of S.

Proof. (1) = (2). Obvious. (2) = (3). By Lemma 5.2. (3) = (1). By
Lemma 5.5 and Lemma 5.1 O

Recall that a module Mg is co-retractable [2], if for every submodule
N # M of M, s(N) # 0.

LEMMA 5.7. Let Mg be a semi-injective co-retractable module. Then
for every a € S = Endg(M) the following are equivalent:
(1) The left ideal Sc is large in S.
(2) The submodule Ker(«) is small in M.

Proof. (1) = (2). Suppose that Ker(«) is not small in M, then M =

Ker(a)+K for some submodule K # M of M. Since M is co-retractable
ls(K) #0. Let A € Sanls(K), then A = pa for some € S and A(K) =
pa(K) =0. So A(M) = M Ker(a) + K) = pa(Ker(a)) + pa(K) = 0.
Thus Sa N ls(K) = 0. Since Sa is large in S implies g(K) = 0 a
contradiction.
(2) = (1). If Ker(a) =0, then Sa = ¢g(Ker(a)) = S hence M is semi-
injective, and so S« is large in S. Suppose that Ker(a) # 0. Let I be
a left ideal of S such that SaanN I = 0. Suppose that I # 0, then there
is 0 # A € I and Ker(X) # 0, hence if Ker(\) = 0 implies that SA =
ls(Ker(A\)) = S because M is semi-injective. Thus, S = SAXC I C S,
so S =1 and so S = SanNS = SanNI =0 a contradiction hence S«
is large in S. Since M is semi-injective

SanNSA=tls(Ker(a)+ Ker(\) =0

Since M is co-retractable implies that Ker(a) + Ker(A) = 0 and so
Ker(a) =0 a contradiction, thus S« is large in S. O

THEOREM 5.8. Let My be a semi-injective co-retractable module and
J(S) = 0. Then the following are equivalent:
(1) M is an I*—module.
(2) For every 0 # « € S, Ker(a) contained in a direct summand N # M
of M.
(3) The ring S is semi-potent.
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Proof. (1) = (2). Since M is semi-injective, by Lemma 3.7 AS C
J(S)=0,80AS =0. If 0 # o € S, then a € AS and so Ker(a) is
not large in M, by assumption Ker(a) contained in a direct summand
N # M of M.

(2) = (3). By Corollary 3.10. (3) = (1). Let A be not large submodule
of M, then A # M. If A =0 prove is completed. Suppose that A # 0,
since M is co-retractable, {s(A) # 0 so (g(A) € J(S). By assumption
there exists an idempotent 0 # e € S, e € {g(A), thus A C Ker(«) and
Ker(a) # M is a direct summand of M. O

THEOREM 5.9. Let My be a semi-injective module and Soc(M) = M.
Then the following are equivalent:
(1) M is an I*—module.
(2) The module M is co-retractable and for every 0 # a € S, Ker(«)
contained in a direct summand N # M of M.
(3) The module M is co-retractable with J(S) = 0 and S is a semi-potent
ring.

Proof. (1) = (2). Let A # M be a submodule of M, then A  Soc(M)
so A is not large in M. By assumption A C N for some direct summand
N # M of M. Thus M = N & K for some submodule K # 0 of M.
Let e : M — K be the projection, then 0 # ¢ € S is an idempotent and
e(A) =0hence A C N,soe € ls(A), and hence M is co-retractable. Let
0# a €S, then Ker(a) # M so Soc(M)  Ker(«) therefore Ker(a)
is not large in M by assumption Ker(a) contained in a direct summand
D # M of M. (2) = (3). First we will prove that J(S) = 0. Assume that
J(S) #0. Let 0 # a € J(S), then by assumption Ker(a) C N for some
direct summand N # M of M. Let e : M — N be the projection, then
1 # e € S is an idempotent, thus Ker(a) C N = Im(e) = Ker(1 —e).
Since M is semi-injective, by Lemma 3.6, S(1 —e) C Sa C J(S) so
1 — e = 0 a contradiction. Since M is semi-injective co-retractable and
J(S) = 0, semi-potency of S implies from Theorem 5.8. (3) = (1). By
Theorem 5.8. [

THEOREM 5.10. Let Mp be a semi-injective co-retractable module
and Soc(M) = M. Then the following are equivalent:
(1) M is an I* —module.
(2) For every 0 # « € S, Ker(a) contained in a direct summand N # M
of M.
(3) J(S) = AS and S is a semi-potent ring.
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Proof. (1) = (2). By Theorem 5.9. (2) = (3). First we will prove
that J(S) = AS. Since M is semi-injective, by Lemma 3.7 AS C
J(S). Let a € J(S). Assume that o ¢ AS, then Ker(a) is not large
in M by assumption Ker(a) C N for some direct summand N # M
of M. Let e : M — N be the projection, then 1 # e € S is an
idempotent, thus Ker(a) € N = Im(e) = Ker(l —e). Since M is
semi-injective, by Lemma 3.6, S(1 —¢) C Saa C J(S)so1l—e =0 a
contradiction, thus J(S) = AS. Since M is semi-injective co-retractable
and Soc(M) = M, semi-potency of S implies from Theorem 5.9. (3) =
(1). Let A # 0 be a not large submodule of M, then A # M. Since M
is co-retractable, £g(A) # 0, so there exists 0 # o € S, a € {g(A) and
so A C Ker(a). Assume that a € J(S) = AS, then Ker(a) is large
in M. Since Soc(M) = M, M = Ker(a) so a = 0 a contradiction.
Therefore a & J(S), by assumption 5 = faf for some 0 # 5 € S. For
g = Pa follows that 0 # g € S is an idempotent and A C Ker(a) C
Ker(g) where Ker(g) # M is a direct summand of M, So M is an
I*—module. ]
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