DOI QR코드

DOI QR Code

이형코일을 이용한 무선전력전송 시스템 송신 코일 최적화

Optimizing Transmitting Coil of Wireless Power Transmission System with Different Shape Coils

  • Kim, Young Hyun (Department of Electronics Engineering, Incheon National University) ;
  • Koo, Kyung Heon (Department of Electronics Engineering, Incheon National University)
  • 투고 : 2017.09.28
  • 심사 : 2017.12.19
  • 발행 : 2017.12.31

초록

본 논문에서는 6.78 MHz 자기공진방식 무선전력전송 송수신 코일을 최적화하고 이에 따른 시뮬레이션 및 측정 결과를 제시하였다. 전송 효율은 시스템 형태 및 코일 크기 등 다양한 요인에 따라 영향을 받게 되므로 자기 공진형 무선전력전송의 실용화에 있어 코일 구조를 각각 송신용 헬리컬 공진코일과 수신용 평판형 스파이럴 공진코일을 구성하여 부피의 문제점을 최소화하고 원통형 형태의 무선충전형태에 맞게 코일의 크기, 공진기 내의 코일과 코일 간의 거리 등을 결정하였으며, 전자계 시뮬레이션을 통해 이를 확인하였다. 860mm 지름 상판과 600mm 떨어진 기둥의 원통형 구조에 대하여 적용 가능한 무선전력전송 코일을 설계하여 특성을 시뮬레이션하고, 제작하여 특성을 측정하였다. 시뮬레이션 특성은 ${\mid}S_{21}{\mid}$이 -0.53 dB, 효율 88 %, 측정 결과는 ${\mid}S_{21}{\mid}$이 -0.71 dB 로 효율 85 %를 나타내었다.

In this paper, we optimize the wireless power transmission (WPT) coil, and then compare the EM simulation and measurement using magnetic coupling at 6.78 MHz. As transmission efficiency is affected by various factors such as the shape of the system, the size of the coils, the coil structure is proposed to consist of a helical resonant for transmission and a spiral resonant for reception. The size of the coil and the distance between the coils are determined to minimize the volume problem, and the shape of the coil are confirmed by EM simulation. A WPT system is designed with 860mm diameter top plate and cylindrical structure of column spaced 600mm apart, and the characteristics are simulated and measured. The simulation shows that ${\mid}S_{21}{\mid}$ is -0.53 dB with the efficiency of 88%, and the measurement result is that ${\mid}S_{21}{\mid}$ is -0.71 dB with the efficiency of 85%.

키워드

참고문헌

  1. A. Kurs, A. Karalis, R. Moffatt, J. D. Joanopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly magnetic resonances," Science, vol. 317, pp. 83-86, 2007. https://doi.org/10.1126/science.1143254
  2. Y. K. Moon, S. J. Kang, G. H. Kim, Y. J. Won, and S. O. Im, "Technology trend and implementation for mobile WPT," The Journal of institute of Electronics and Information Engineers, Vol. 38, No. 10, pp. 26-34, Oct. 2011.
  3. S. M. Kim, J. I. Moon, I. K. Cho, J. H. Yoon, and W. J. Byun, "The technical trend and future direction of wireless power transmission," Electronics and Telecommunications Trends, Vol. 29, No. 3, pp. 98-106, June 2014.
  4. Y. S. Cho, J. H. Park, Y. S. Nam, and S. Y. Choi, "Miniaturization of inductive resonator for implementation of wireless power transfer technology using resonant inductive coupling," The Journal of institute of Information and Communication Engineering, Vol. 18, No. 8, pp. 1798-1804, Aug. 2014. https://doi.org/10.6109/jkiice.2014.18.8.1798
  5. A. P. Sample, D. A. Meyer, and J. R. Smith, "Analysis, experimental results, and range adaptation of magnetically coupled resonators for wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 58, No. 2, pp 544-554, Feb. 2011. https://doi.org/10.1109/TIE.2010.2046002
  6. D. U. Ryu, Y. H. Kim, and K. H. Koo, "Performance measurement of the wireless charging devices using electromagnetic induction techniques," The Journal of Advanced Navigation Technology, Vol. 19, No. 3, pp. 237-243, June 2015. https://doi.org/10.12673/jant.2015.19.3.237
  7. P. Vizmuller, RF Design Guide, London : Artech House, pp. 218 - 219, 1995.
  8. J. H. Park, H. Y. Yang, and C. S. Kim, "Review for the helical coil type and sprial coil type in a mid range wireless power transfer system," in Proceeding of the KIEE summer conference 2011, PP. 11-12, July. 2011.
  9. H. A. Wheeler, "Simple inductance formulas for radio Coils," Proceedings of the Institute of Radio Engineers, Vol. 16, No. 10, pp. 1398-1400, Oct. 1928.