DOI QR코드

DOI QR Code

Quantum Secure Direct Community using Time Lag

시간지연을 이용한 양자비밀직접통신

  • Received : 2017.10.26
  • Accepted : 2017.12.05
  • Published : 2017.12.31

Abstract

Quantum cryptography, which is emerging as a next generation password, is being studied by quantum cryptographic transfer protocols and quantum secret communication. Quantum key transfer protocol can be used in combination with the modern password because of the inefficiency of the use of the password, or the use of OTP(one time password). In this paper an algorithm for direct communication by means of direct cryptographic communications rather than quantum keys. The method of implementing quantum secure direct community was adopted using 2-channel methods using Einstein gravity field. Two channels were designed to adopt a quantum secret communication protocol that applies time delay between 2-channels of channel to apply time difference between 2-channels. The proposed time delay effect reflects the time delay by reflecting the gravitational lensing phenomenon. Gravity generator with centrifugal acceleration is incorporated in the viscometer, and the time delay using this implies the correlation between the variance of the metametry.

차세대 암호로 대두 되고 있는 양자암호는 양자키전송 프로토콜과 양자비밀직접통신으로 나뉘어 연구되고 있다. 양자키전송 프로토콜은 사용상의 비효율성 때문에 현대암호와 병합하여 사용하거나 OTP를 포기한 형태로 사용될 수 있다. 본 고에서는 양자키전송이 아닌 직접통신을 양자암호화 하여 진행하는 알고리즘을 제안하였다. 양자비밀 직접통신을 구현하는 방식은 2채널 방식을 이용하였다. 두 채널 중 한쪽 채널에 아인슈타인의 중력장에의한 시간지연 함수를 적용하여 두 채널간 시간차를 적용하는 방식의 양자비밀직접통신 프로토콜을 설계 하였다. 제안하는 시간 지연 효과는 중력렌즈 현상을 반영한 것으로 점질량에 의한 시간지연을 제안하였다. 원심가속도를 이용한 중력 발생기는 점질량계에 포함되며 이를 이용한 시간지연은 중력계의 변화에 의한 상관관계를 보임을 알 수 있다.

Keywords

References

  1. H. J. Park, M. Y. Bae, J. S. Kang. and Y. J. Yeom, "Key derivation functions using the dual key agreement based on QKD and RSA cryptosystem," Journal of The Korean Institute of Communication Sciences, vol. 41, no. 4, pp. 479-488, Apr. 2016. https://doi.org/10.7840/kics.2016.41.4.479
  2. S. U. Han, B. K. Park, Y. S. Kim. and S. U. Mun, "New concept of physical layer security communication technology, quantum secure community," Journal of The Korean Institute of Communication Sciences, vol. 31, no. 6, pp. 46-52, May 2014.
  3. C. H. Bennett and G. Brassard, "Quantum cryptography: public key distribution and coin tossing," In proceedings of IEEE INternational Conference on Computers, Systems and Signal Processing, Bangalore, India , p.175-179, 1984.
  4. J. J. Seol. K. C. Rim. "Using double photon transmission of quantum cryptography." Journal of the korea Institute of Information and Communication Engineering, vol. 17. no. 8. pp. 1857-1864. Aug. 2013. https://doi.org/10.6109/jkiice.2013.17.8.1857
  5. J. H. Min. J. H. Bang, and B. S. Ham, "A security enhanced quantum secure direct communication protocol," in Proceedings of Symposium of the Korean Institute of communications and Imformation Sciences, Hiwon, pp. 496-497, 2016.
  6. A. Meslouhi. Y. Hassouni. "A quantum secure direct communication protocol using entangled modified spin coherent states," Quantum Information Process, vol. 12, no. 7, pp. 2603-2621, Jul. 2013. https://doi.org/10.1007/s11128-013-0546-4
  7. J. Li. D. J. Song. R. Li. and X. Lu. "A quantum secure direct communication protocol based on four-qubit cluster state," Security and Communication Networks, vol. 8, no. 1, pp. 36-42, Jan. 2015. https://doi.org/10.1002/sec.711
  8. A. Farouk. M. Zakaria. A. Megahed. and F. A. Omara. "A generalized architecture of quantum seure direct communication for N disjointed users with authentication," Nature Scientific Reports, Sci-16080, 2015.
  9. S. Madhavi, "Secured Data Aggregation Scheduling in Ubiquitous Quantum Sensor Networks", Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology, vol. 4, no. 1, pp.17-30, June 2014. https://doi.org/10.14257/AJMAHS.2014.06.02