이원계 칼코지나이드 소재 기반 박막 태양전지 연구 동향

  • 임동하 (전남대학교 신소재공학부) ;
  • 이다정 (전남대학교 신소재공학부) ;
  • 조재유 (전남대학교 신소재공학부) ;
  • 신경록 (전남대학교 신소재공학부) ;
  • ;
  • ;
  • 허재영 (전남대학교 신소재공학부)
  • Published : 2017.12.31

Abstract

최근 들어 환경오염 문제와 화석에너지 자원 고갈로 인해 친환경적인 청정에너지 개발에 대한 중요성이 지속적으로 증대되고 있다. 태양광 기술은 다양한 장점에도 불구하고 아직까지 보급 확대 수준이 미미한데, 이는 기존 화석연료 기반 발전방식에 비해 발전단가의 경제성이 확보되지 않았기 때문이다. 본 원고에서는 이러한 발전단가를 낮추기 위해 이루어지고 있는 연구의 일례로서 SnS와 $Sb_2Se_3$ 중심의 이원계 칼코지나이드(binary chalcogenides) 원소 기반 박막태양전지 연구 동향을 알아보고자 한다.

Keywords

References

  1. T. D. Lee and A. U. Ebong, "A review of thin film solar cell technologies and challenges," Renew. Sustain. Energy Rev., vol. 70, pp. 1286-1297, Apr. 2017. https://doi.org/10.1016/j.rser.2016.12.028
  2. W. Wang et al., "Device Characteristics of CZTSSe Thin-Film Solar Cells with 12.6% Efficiency," Adv. Energy Mater., vol. 4, no. 7, p. 1301465, 2014. https://doi.org/10.1002/aenm.201301465
  3. J. Kim and B. Shin, "Strategies to reduce the open-circuit voltage deficit in $Cu_2ZnSn(S,Se)_4$ thin film solar cells," Electron. Mater. Lett., vol. 13, no. 5, pp. 373-392, Sep. 2017. https://doi.org/10.1007/s13391-017-7118-1
  4. C. Wadia, A. P. Alivisatos, and D. M. Kammen, "Materials availability expands the opportunity for large-scale photovoltaics deployment," Environ. Sci. Technol., vol. 43, no. 6, pp. 2072-2077, 2009. https://doi.org/10.1021/es8019534
  5. K. T. R. Reddy, N. K. Reddy, and R. W. Miles, "Photovoltaic Properties of SnS Based Solar Cells," Sol. Energy Mater. Sol. Cells, vol. 90, no. 18-19, pp. 3041-3046, 2006. https://doi.org/10.1016/j.solmat.2006.06.012
  6. A. Schneikart, H.-J. Schimper, A. Klein, and W. Jaegermann, "Efficiency limitations of thermally evaporated thin-film SnS solar cells," J. Phys. D. Appl. Phys., vol. 46, no. 30, p. 305109, 2013. https://doi.org/10.1088/0022-3727/46/30/305109
  7. T. Ikuno, R. Suzuki, K. Kitazumi, N. Takahashi, N. Kato, and K. Higuchi, "SnS thin film solar cells with $Zn_{1-x}Mg_xO$ buffer layers," Appl. Phys. Lett., vol. 102, no. 19, p. 193901, 2013. https://doi.org/10.1063/1.4804603
  8. P. Sinsermsuksakul, J. Heo, W. Noh, A. S. Hock, and R. G. Gordon, "Atomic layer deposition of tin monosulfide thin films," Adv. Energy Mater., vol. 1, no. 6, pp. 1116-1125, 2011. https://doi.org/10.1002/aenm.201100330
  9. P. Sinsermsuksakul et al., "Enhancing the efficiency of SnS solar cells via band-offset engineering with a zinc oxysulfide buffer layer," Appl. Phys. Lett., vol. 102, no. 5, 2013.
  10. P. Sinsermsuksakul et al., "Overcoming Efficiency Limitations of SnS-Based Solar Cells," Adv. Energy Mater., vol. 4, no. 15, 2014.
  11. V. Steinmann et al., "3.88% Efficient Tin Sulfide Solar Cells Using Congruent Thermal Evaporation," Adv. Mater., vol. 26, no. 44, pp. 7488-7492, 2014. https://doi.org/10.1002/adma.201402219
  12. Y. Kawano, J. Chantana, and T. Minemoto, "Impact of growth temperature on the properties of SnS film prepared by thermal evaporation and its photovoltaic performance," Curr. Appl. Phys., vol. 15, no. 8, pp. 897-901, 2015. https://doi.org/10.1016/j.cap.2015.03.026
  13. V. R. Minnam Reddy, S. Gedi, C. Park, R. W. Miles, and K. T. Ramakrishna Reddy, "Development of sulphurized SnS thin film solar cells," Curr. Appl. Phys., vol. 15, no. 5, pp. 588-598, May 2015. https://doi.org/10.1016/j.cap.2015.01.022
  14. J. yoon Kang, S. M. Kwon, S. H. Yang, J. H. Cha, J. A. Bae, and C. W. Jeon, "Control of the microstructure of SnS photovoltaic absorber using a seed layer and its impact on the solar cell performance," J. Alloys Compd., vol. 711, pp. 294-299, 2017. https://doi.org/10.1016/j.jallcom.2017.04.001
  15. N. K. Reddy and K. T. R. Reddy, "SnS films for photovoltaic applications: Physical investigations on sprayed $Sn_xS_y$ films," Phys. B Condens. Matter, vol. 368, no. 1-4, pp. 25-31, 2005. https://doi.org/10.1016/j.physb.2005.06.032
  16. P. D. Antunez, D. A. Torelli, F. Yang, F. A. Rabuffetti, N. S. Lewis, and R. L. Brutchey, "Low temperature solution-phase deposition of SnS thin films," Chem. Mater., vol. 26, no. 19, pp. 5444-5446, 2014. https://doi.org/10.1021/cm503124u
  17. L. a Burton et al., "Synthesis, Characterization, and Electronic Structure of Single-Crystal SnS, $Sn_2S_3$, and $SnS_2$," Chem. Mater., vol. 25, no. 24, pp. 4908-4916, 2013. https://doi.org/10.1021/cm403046m
  18. M. Sugiyama, K. T. R. Reddy, N. Revathi, Y. Shimamoto, and Y. Murata, "Band offset of SnS solar cell structure measured by X-ray photoelectron spectroscopy," Thin Solid Films, vol. 519, no. 21, pp. 7429-7431, 2011. https://doi.org/10.1016/j.tsf.2010.12.133
  19. G. Ghosh, "The sb-se(antimony-selenium) system," J. Phase Equilibria, vol. 1 4, no. 6 , pp. 753-763, 1993. https://doi.org/10.1007/BF02667889
  20. P. Xu, S. Chen, B. Huang, H. J. Xiang, X. G. Gong, and S. H. Wei, "Stability and electronic structure of $Cu_2ZnSnS_4$ surfaces: First-principles study," Phys. Rev. B - Condens. Matter Mater. Phys., vol. 88, no. 4, pp. 1-8, 2013.
  21. S. Messina, M. T. S. Nair, and P. K. Nair, "Antimony Selenide Absorber Thin Films in All-Chemically Deposited Solar Cells," J. Electrochem. Soc., vol. 156, no. 5, p. H327, 2009. https://doi.org/10.1149/1.3089358
  22. M. Luo et al., "Thermal evaporation and characterization of superstrate $CdS/Sb_2Se_3$ solar cells," Appl. Phys. Lett., vol. 104, no. 17, 2014.
  23. M. Leng et al., "Selenization of $Sb_2Se_3$ absorber layer: An efficient step to improve device performance of CdS / $Sb_2Se_3$ solar cells Selenization of $Sb_2Se_3$ absorber layer : An efficient step to improve devi," vol. 83905, no. 2014, 2015.
  24. X. Liu et al., "Improving the performance of $Sb_2Se_3$ thin film solar cells over 4% by controlled addition of oxygen during film deposition," Prog. Photovoltaics Res. Appl., vol. 23, no. 12, pp. 1828-1836, 2015. https://doi.org/10.1002/pip.2627
  25. Y. Zhou et al., "Thin-film $Sb_2Se_3$ photovoltaics with oriented one-dimensional ribbons and benign grain boundaries," Nat. Photonics, vol. 9, no. 6, pp. 409-415, 2015. https://doi.org/10.1038/nphoton.2015.78
  26. Z. Li et al., "Efficiency enhancement of $Sb_2Se_3$ thin-film solar cells by the co-evaporation of Se and $Sb_2Se_3$," Appl. Phys. Express, vol. 9, no. 5, p. 52302, 2016. https://doi.org/10.7567/APEX.9.052302
  27. Y. Li et al., "The effect of sodium on antimony selenide thin film solar cells," RSC Adv., vol. 6, no. 90, pp. 87288-87293, 2016. https://doi.org/10.1039/C6RA20690E
  28. X. Wen et al., "Magnetron sputtered ZnO buffer layer for $Sb_2Se_3$ thin film solar cells," Sol. Energy Mater. Sol. Cells, vol. 172, no. February, pp. 74-81, 2017. https://doi.org/10.1016/j.solmat.2017.07.014
  29. Y. Zhou et al., "Buried homojunction in $CdS/Sb_2Se_3$ thin film photovoltaics generated by interfacial diffusion," Appl. Phys. Lett., vol. 111, no. 1, 2017.
  30. X. Liu et al., "Enhanced $Sb_2Se_3$ solar cell performance through theory-guided defect control," Prog. Photovoltaics Res. Appl., vol. 25, no. 10, pp. 861-870, 2017. https://doi.org/10.1002/pip.2900
  31. C. Chen et al., "6.5% Certified Efficiency $Sb_2Se_3$ Solar Cells Using PbS Colloidal Quantum Dot Film as Hole-Transporting Layer," ACS Energy Lett., vol. 2, no. 9, pp. 2125-2132, 2017. https://doi.org/10.1021/acsenergylett.7b00648
  32. X. Liu et al., "Thermal Evaporation and Characterization of $Sb_2Se_3$ Thin Film for Substrate $Sb_2Se_3$ /CdS Solar Cells," ACS Appl. Mater. Interfaces, vol. 6, no. 13, pp. 10687-10695, 2014. https://doi.org/10.1021/am502427s
  33. C. Yuan, L. Zhang, W. Liu, and C. Zhu, "Rapid thermal process to fabricate $Sb_2Se_3$ thin film for solar cell application," Sol. Energy, vol. 137, pp. 256-260, 2016. https://doi.org/10.1016/j.solener.2016.08.020
  34. G. X. Liang et al., "Facile preparation and enhanced photoelectrical performance of $Sb_2Se_3$ nano-rods by magnetron sputtering deposition," Sol. Energy Mater. Sol. Cells, vol. 160, no. October 2016, pp. 257-262, 2017. https://doi.org/10.1016/j.solmat.2016.10.042
  35. Z. Li et al., "$Sb_2Se_3$ thin film solar cells in substrate configuration and the back contact selenization," Sol. Energy Mater. Sol. Cells, vol. 161, no. October 2016, pp. 190-196, 2017. https://doi.org/10.1016/j.solmat.2016.11.033
  36. Y. Zhou et al., "Solution-Processed Antimony Selenide Heterojunction Solar Cells," Adv. Energy Mater., vol. 4, no. 8, p. 1301846-n/a, 2014. https://doi.org/10.1002/aenm.201301846
  37. K. Y. Rajpure and C. H. Bhosale, "Effect of Se source on properties of spray deposited $Sb_2Se_3$ thin films," Mater. Chem. Phys., vol. 62, no. 2, pp. 169-174, 2000. https://doi.org/10.1016/S0254-0584(99)00173-X
  38. Y. Lai et al., "Preparation and characterization of $Sb_2Se_3$ thin films by electrodeposition and annealing treatment," Appl. Surf. Sci., vol. 261, pp. 510-514, 2012. https://doi.org/10.1016/j.apsusc.2012.08.046
  39. Y. RodrRguez-Lazcano, Y. PeRa, M. T. S. Nair, and P. K. Nair, "Polycrystalline thin films of antimony selenide via chemical bath deposition and post deposition treatments," Thin Solid Films, vol. 493, no. 1-2, pp. 77-82, 2005. https://doi.org/10.1016/j.tsf.2005.07.238
  40. K. Zeng, D.-J. Xue, and J. Tang, "Antimony selenide thin-film solar cells," Semicond. Sci. Technol., vol. 31, no. 6, p. 63001, 2016. https://doi.org/10.1088/0268-1242/31/6/063001