
Journal of Multimedia Information System VOL. 4, NO. 4, December 2017(pp. 255-262): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2017.4.4.255

255

I. INTRODUCTION

 Recent research [13] has revealed that over 30% of the
total amount of code is repetitive mostly because of the
copy- and-paste programming practice, the framework-
based development, and the reuse of same design patterns
or libraries, thus creating code change patterns (i.e.,
refactoring or bug fixing patterns). As code changes are
repetitive, anomalous changes also could repeat either by a
developer’s own error or by other developers’ fault
unknowingly.
 In daily software development, it is time consuming or
tedious for code reviewers to keep track of code changes all
the time. In particular, because it is commonly
recommended to have small commits frequently rather than
having large commits, browsing individual changes in
multiple revisions makes code review difficult and
inefficient.
 To improve the productivity of the code review process,
in this paper, we introduce an enhanced code review tool
that summarizes code changes including change types (i.e.,
refactoring types), revisions, and changed location, as well

as shows which changes require more attention from a code
reviewer. Additionally, our approach allows the code
reviewer to express her preferences (i.e., feedback) during
code review through a modern IDE (e.g., Eclipse), so that it
makes possible to customize code review strategies.
First, to summarize code changes, we use code clones and
an AST-based pattern matching technique. Because
repetitive code fragments are likely to have potential bugs
or mistakes, our tool finds all clones using a clone detection
tool [9] and then examines how those clones have been
evolved across revisions using pre-defined change pattern
templates. Second, our tool collects change information and
assesses the quality of the corresponding code using well-
known software quality measurement metrics. The
collected information is used to identify important code
changes that require an instant attention of the code
reviewer.
 To demonstrate the benefits of our approach, we evaluated
our approach with two third-party projects using the
developed code review tool. The experimental result shows
the effectiveness of our approach as our recommendation
mechanism successfully informed a code reviewer that

Which Code Changes Should You Review First?:

A Code Review Tool to Summarize and Prioritize
Important Software Changes

Myoungkyu Song1 and Young-Woo Kwon2,*

Abstract

In recent software development, repetitive code fragments (i.e., clones) are common due to the copy-and-paste programming practice, the

framework-based development, or the reuse of same design patterns. Such similar code fragments are likely to introduce more bugs but are
easily disregarded by a code reviewer or a programmer. In this paper, we present a code review tool to help code reviewers identify important
code changes written by other programmers and recommend which changes need to be reviewed first. Specifically, to identify important code
changes, our approach detects code clones across revisions and investigates them. Then, to help a code reviewer, our approach ranks the
identified changes in accordance with several software quality metrics and statistics on those clones and changes. Furthermore, our approach
allows the code reviewer to express their preferences during code review time. As a result, the code reviewer who has little knowledge of a
code base can reduce his or her effort by reviewing the most significant changes that require an instant attention. To evaluate our approach,
we integrated our approach with a modern IDE (e.g., Eclipse) as a plugin and then analyzed two third-party open source projects. The
experimental results indicate that our approach can improve code reviewer’s productivity.

Key Words: Change analysis, code clone, refactoring, tool

Manuscript received December 20, 2017; Revised December 22, 2017; Accepted December 22, 2017. (ID No. JMIS-2017-0054)

Corresponding Author (*): Young-Woo Kwon, Kyungpook National University, Daegu, South Korea, +82-53-950-7566
1 Dept. of Computer Science, University of Nebraska at Omaha, USA, myoungkyu@unomaha.edu
2 School of Computer Science and Engineering, Kyungpook National University, South Korea, ywkwon@knu.ac.kr

Which Code Changes Should You Review First?: A Code Review Tool to Summarize and Prioritize Important Software Changes.

256

some changes need a programmer’s attention. As a result,
our approach can reduce the effort of a code reviewer who
has little knowledge of a code base. Overall, this paper
makes the following contributions:

• Detecting and classifying code changes: Our approach
can detect code changes using a change analysis
platform and classify the detected changes into well-
known change patterns.

• Ranking code changes: Our approach identifies
important code changes that need to be reviewed first
by a code reviewer based on software quality metrics,
change statistics, and user feedback.

• Empirical evaluation: We evaluate our approach by
conducting assessments on two third party projects and
user studies.

The rest of this paper is organized as follows. Section III
presents our approach. Section IV empirically evaluates our
approach. Section V compares our approach and other
closely related approaches, and then we conclude this paper
in Section VI.

II. MOTIVATING EXAMPLE

In this section, we describe an example that motivates this
research. Suppose a software development team decided
to perform refactoring on their project to improve software
quality regarding readability and maintainability. In
particular, Alice applied the Extract Method
refactoring to multiple cloned regions to remove duplicated
code fragments. She created a new method with the
duplicated code fragments and then manually replaced all
the occurrences of the duplicated code fragments with the
newly created method. Moreover, Bob applied the Move
Type To New-file refactoring to an inner class to make it as
a general, reusable type. The other team members also
applied different refactoring practices [7]. Assume Carly is
a project manager and in charge of reviewing a code base
once a week. To ensure that there is no mistake in these

refactorings, Carly needs to investigate line level
differences file by file, which is usually omission-prone
because Alice made changes in multiple files across
revisions. As a result, Carly needs tool support to inspect
the Alice’s changes separately from other irreverent issues.
 In addition, Carly may want to only review the code
fragments affected by the Move Type To New-file
refactoring and look at similar changes together because
based on her experience she knows junior programmers
often make mistakes when applying this refactoring
practice. In other words, she may want to prioritize code
change inspection tasks based on her own criteria, so that
she can efficiently review all code changes. To that end, our
approach helps developers (or programmers depending
your context) selectively inspect code changes based on the
level of the change severity during peer code reviews.

III. APPROACH

 In this section, we detail our approach, a code review
tool that can identify important code changes to help
code reviewers.

3.1. Approach Overview
 Figure 1 shows our approach overview. Our approach can
be mainly summarized in two steps—change analysis and
review recommendation. Specifically, the first step is to
analyze a project repository using three analysis tools
including a commit analyzer, a code quality measurement
tool, and a clone detection tool. The clone detection tool
takes as input revision history and finds code clones
across revisions. The change analysis engine analyzes
how those code clones have been changed across
revisions and then determine their change types using a set
of pre-defined change pattern templates.
 The latter part of our approach is to identify important
changes that require more attention from a code reviewer.
The recommendation engine takes the identified change

Fig 1. Approach overview.

Journal of Multimedia Information System VOL. 4, NO. 4, December 2017(pp. 255-262): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2017.4.4.255

257

types from the change analysis engine as well as feedback
from the code reviewer. Then, those changes are
rearranged in accordance with reviewer’s preferences and
the severity of changes. In the following sections, we
describe our approach in detail.

3.2. Identifying Important Code Changes
Our approach analyzes code changes using a set of code

assessment tools including commit-based analysis, clone-
based analysis, and pattern-based analysis. In the
following discussion, we describe each analysis tool in
turn.

3.2.1 Pattern-based Change Analysis
 In this section, we dis- cuss how changes are analyzed
using pre-defined patterns. Our approach analyzes the
subsequent revisions (ri+1, ri+2, ..., rn) of the original clone
ci, and then identifies ASTs that are related to the clone
ci to see how a particular clone (i.e., code change)
evolves across revisions. By comparing the clone ci and
the evolved clone cj , it makes possible to infer its change
pattern, which is a refactoring type. Specifically, our
approach is template-based pattern matching that consists
of pre- and post-edit matchers. We implemented six
pattern matching templates based on well-known
refactoring practices [7] as follows:

 Extract Method: turns code fragments into a method.

 Pull-up Method: moves code fragments to a super class.

 Extract Super-class: creates a super class and moves
common methods or variables to the super class.

 Move Type To New-file: creates a new compilation unit
for the selected member type (e.g., inner class), updating
all references as needed.

 Extract and Move Method: turns code fragments into
a method and then moves the extracted method to other
class.

 Extract and Pull-up Method: turns code fragments into
a method and then moves it to a super class.

Finally, we obtain a list of frequently occurring
refactorings as follows: rj ∈ R = {ri+1, ri+2, ..., rm}. Changes
that are not classified into the above refactoring types are
tagged undefined (UD). All this information is passed to
the review assistance tool to infer important refactorings
that need to be reviewed first.

3.2.3 Clone-based Change Analysis
 To identify code change patterns, our approach uses a
clone detector and matches changes of code clones with
our predefined templates. The clone detector, Deckard—a
tree-based clone detection tool [9], results in clone groups
(CG) which contains a set of clones. Then, we repeat the

same process for the particular revision range where a
code reviewer must review. The found clone groups are
partitioned based on similar changes, which are
considered as potential repeated code changes. Based on
those code changes, we determine their change types
(i.e., refactoring types) using our AST-based pattern
matching tool. Because found clones are only pieces of
a code base which are syntactically incomplete, it is
inaccurate to find specific change patterns based on code
fragments. Thus, we find ASTs that contain each code
clone and the ASTs will be compared with predefined
change patterns.

3.3. Recommending Code Review
To help code reviewers better understand code changes

across revisions and reduce review efforts, our code
review tool recommends review strategies by showing
important changes that need to be reviewed first at code
review time. To that end, identified changes (i.e.,
refactorings and unclassified code changes) are reordered
based on software quality metrics, statistics on changes,
and feedback provided by a code reviewer. In this section,
we describe two recommendation models—statistics- and
feedback-based recommendation.

3.3.1 Statistics-based Recommendation
 The first recommendation model uses static information
including software quality metrics and statistics on code
changes. In particular, ranking scores for the
recommendation can be calculated using the following
metrics: (1) uncommented lines of code (LoC), (2)
McCabe’s cyclomatic complexity (CC), (3) the weighted
number of methods in a class (WNC), (4) the occurrence
of a same code change types (OC), and (5) the number of
clones in a same change group (NC).
 The quality of code fragments containing each change cj

∈ C is assessed at micro-level and macro-level. In
particular, we measure the lines of code and cyclomatic
complexity for each code change. The lines of code
pertain to the lines of code common to the clones and the
cyclomatic complexity is calculated for the specific
method involved in the change. For the cyclomatic
complexity, we first calculate the cyclomatic complexity
for each method covering a particular code change and then
choose the maximum complexity of them. These two
metrics can provide better understanding about code
changes made by programmers at micro level.
 To evaluate code changes at macro level, our approach
uses statistics on code changes. Specifically, we count the
weighted number of methods in a class, which is not
just a simple count of methods in a class but a metric
which is the sum of the complexities of all methods of

Which Code Changes Should You Review First?: A Code Review Tool to Summarize and Prioritize Important Software Changes.

258

the class pertaining to the change [12]. Furthermore, we
calculate the occurrence of a same code change type,
which represents how frequently a particular refactoring
occurred in the given revision range.

For example, if Extract Method is the most
frequently performed refactoring across revision, the code
reviewer can review all Extract Method refactorings.
By reviewing similar refactoring patterns at same time, the
code reviewer may reduce the overall code review time.
Finally, the number of clones in a same change group
represents how often the same refactoring was repeated. In
particular, when a programmer simply copies and pastes a
particular piece of code, there are a number of clones in a
same change group. Because repetitive code fragments are
highly vulnerable to evolution, those changes need to be
first reviewed.
 The final statistics-based ranking score, si is calculated
as follows:

where, cci is McCabe’s cyclomatic complexity; wnmi is the
weighted number of methods; loci is lines of code; fi is the
occurrences of a same code change type; OC and ni are the
number of clones in a same change group. All the values of
CC, W NM, LoC, OC and NC are normalized ranging
between 0 and 1, and then the final ranking score is between
0 and 2.

3.3.2 Feedback-based Recommendation
 In addition to the aforementioned metrics and statistics,
we take a code re- viewer’s feedback into consideration
because different code reviewers have different review
strategies. For example, one reviewer may want to review
the code changes made by a particular programmer.

Another reviewer may be only interested in a particular
refactoring type that are potentially based on his or her
previous experiences. To that end, we first group similar
clones using the following attributes:

 Clone group: similar clone changes are grouped into
the same clone group.

 Refactoring type: clone groups are classified into well-
known refactoring types described above. If there is no
matched refactoring type for the clone group, they
belong to a unclassified group.

 Revision number: if different code clones have a same
revision number or close revision numbers, these
changes might occur at the same time.

 Package: if code changes have the same package name,
they are closely related.

 Programmer information: if programmer information
is provided, clones created by the same programmer are
grouped together.

Then, to include user feedback in the ranking, we allow

code reviewers to express their feedback through a code
review tool integrated and then recalculate their rankings
as followings:

∀dj ∈ C, dj = RT + RV + PK + CG

where, RT = 0.25 when refactoring type of the change cj ∈
C in the ranked list is same as that of the Up-Voted
change. Similarly, values of RV, PK and CG are set to 1
when type, revision, package and clone-group respectively
of the changes in the ranked list is same as that of the
Up-Voted change. Otherwise the values are set to 0. The
idea is to dynamically cluster changes that the reviewer
intends to move them up the ranking order for further
inspection.

Fig. 2. Top: initial recommendations based on program quality metrics and statistics; Bottom: ranking changes according to user
feedback.

Journal of Multimedia Information System VOL. 4, NO. 4, December 2017(pp. 255-262): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2017.4.4.255

259

IV. EVALUATION

In this section, we evaluate our approach and tool through
two third-party projects—ArgoUML and Apache Tomcat 2.
We show how our tool presents changes to a code reviewers
in accordance with several different metrics and user
feedback.

4.1. Code Review Recommendation

Next, we evaluate our recommendation engine with the
ArgoUML project. We first show an initial
recommendation result computed only using static data
and then show how those rankings change in accordance
with user feedback.

4.1.1 Statistics-based Recommendation
 Figure 2 shows the screenshot of the ranked code
changes in Eclipse. On the manual inspection of the top
two changes, it was found that the parseMessage
method was extracted from both SDMessageNotationUml
and MessageNotationUml and placed in the super class
AbstractMessageNotationUml subsequently accross
revisions 283 and 284. The extracted parseMessage
method seems to be highly ineffecient because of its
longer LoC (702) and higher complexity than other code
changes. Surprisingly, the comment made by a developer
about the method— “TODO: - This method is too
complex, lets break it up”, “@throws ParseException
when it detects an error in the attribute string. See also
ParseError.getErrorOffset()”—, and other comments
indicate that this class and method indeed needs more

attention from a code reviewer.

4.1.2 Feedback-based Recommendation
 Finally, we evaluate our feedback-based
recommendation mechanism by emulating user feedback.
A code reviewer can express their preferences by simply
pressing the up- or down-button at the IDE, resulting in the
differently ordered code changes. Figure 2 (bottom)
shows the screenshot of the changed list of code changes.
In this example, we pressed the Up-Vote button (i.g.,

the green button in Figure 3) for the Extract Method
refactoring performed in the
SDMessageNotationUml class. Then, similar changes
(e.g., same refactoring type, same package and class, same
clone group) should move up in the code review tool. As
illustrated in Figure 3 the tool dynamically clustered and
moved up the ranked list, six changes of the Extract
Method refactoring type with the same class and
revision but different methods based on the given feedback.
The code reviewer in this instance can now review six

different changes that are all related to each other, at once
because they were grouped together.

V. RELATED WORK

 The presented approach is closely related to clone
detection and change analysis techniques. To the best of
our knowledge, a code review tool using code clones and
their change patterns is the first of its kind. Thus, in this
section, we briefly introduce representative research
efforts for clone detection and change analysis techniques
and compare our code review tool with state-of-the-art
code review tools and refactoring tools.

5.1. Clone Detection and Change Analysis
 In the software engineering community, clone detection
techniques have been widely discussed for the last
decade. Göde and Koshke [8] and Nguyen et al. [14]
introduced an incremental clone detection algorithm
analyzing the results of previous versions. Krinke [11]
detected code clones in five open source systems and
studied how clone groups had been consistently changed.
Saha et al. [15] and Aversano et al. [4] studied how clones
are evolved. Kim et al [10] also studied the evolution of
clones and classified evolving code clones. We leverage
those research efforts to detect code clones and
understand how they have been evolved across revisions
to infer their change patterns.

Xie et al. found challenges for code change
comprehension and a lack of tool support for
understanding composite changes [16]. Recent research
focuses on identifying or rank- ing refactoring candidates
[17], [6]. Our primary goals are to detect repetitive code
changes and then rank them based on multiple software
quality metrics, change statistics, and dynamic user
feedback.

5.2. Code Review and Refactoring Tools

Existing code review tools [1], [2], [3] are usually used
in practice but require exploring each line by manually
browsing files. Even though cross-file changes are made
with code clones, programmers must manually find all the
locations that were changed using a similar refactoring
practice. Unlike state- of-the-art code review tools, our tool
enables a code reviewer to take a look at all similar
changes at a time.

Another research efforts are to identify refactoring
candidates [5], [18]. Balazinska et al. [5] classify clone
groups, measuring their differences based on a clone
classification scheme, and provide refactoring

Which Code Changes Should You Review First?: A Code Review Tool to Summarize and Prioritize Important Software Changes.

260

opportunities. Tsantalis et al. [18] use a program slicing
technique to capture code modifying an object state and
design rules to identify refactoring candidates from slices.
While these approaches focus on identifying refactoring
opportunities, our approach focuses on identifying and
ranking refactorings examples.

VI. Conclusion

 In this research, we explored how code reviewers can
be assisted with a tool to identify important code changes.
Our code review tool can detect code clones and classify
them as meaningful code changes (e.g., refactoring types).
Furthermore, our tool can recommend code review
strategies to a code reviewer. Through this study, we
evaluated our approach through third party open source
projects. The experimental results indicate that our code
review tool integrated with a modern IDE can effectively
identify important code changes and classify them into
refactoring types, thereby improving the productivity of a
code reviewer.
 As a future research direction, we will create more
change pattern templates to find other refactoring types
as well as bug repair activities. Also, we will extend our
tool to detect potential mistakes occurred during
refactoring and then guide a code reviewer with a set of
possible solutions with real examples to correct such
mistakes.

Acknowledgement
This work was supported by the National Research Found
ation of Korea(NRF) grant funded by the Korea governme
nt(MSIT) (No. 2017R1C1B5075658).

REFERENCES

[1] Code collaborator:
 https://smartbear.com/product/collaborator/, 2017.

[2] Gerrit, http://code.google.com/p/gerrit/, 2017
[3] Phabricator, http://phabricator.org, 2017
[4] L. Aversano, L. Cerulo, and M. D. Penta, “ How clones

are maintained: An empirical study,” In CSMR ’07:
Proceedings of the 11th European Conference on
Software Maintenance and Reengineering, 2007.

[5] M. Balazinska, E. Merlo, M. Dagenais, B. Lagüe, and
K. Kontogiannis, “Measuring clone based
reengineering opportunities,” In Proceedings of
Software Metrics Symposium. Sixth International, pp.
292–303, 1999.

[6] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and

K. Kontogiannis, “Partial redesign of Java software
systems based on clone analysis,” In 6th Working
Conference on Reverse Engineering, 1999

[7] M. Fowler, Refactoring: Improving the Design of
Existing Code. Addison-Wesley Professional, 2000.

[8] N. Göde and R. Koschke, “Studying clone evolution
using incremental clone detection,” Journal of Software:
Evolution and Process, vol. 25, no. 2, pp. 165–192, 2013.

[9] L. Jiang, G. Misherghi, Z. Su, and S. Glondu. Deckard,
“Scalable and accurate tree-based detection of code
clones,” In Proceedings of the 29th International
Conference on Software Engineering, 2007.

[10] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An
empirical study of code clone genealogies,” In
Proceedings of the 13th International Symposium on
Foundations of Software Engineering, 2005

[11] J. Krinke, “Is cloned code more stable than non-cloned
code?,” In Eighth IEEE International Working
Conference on Source Code Analysis and Manipulation,
2008.

[12] R. Moser, A. Sillitti, P. Abrahamsson, and G. Succi,
“Does refactoring improve reusability?,” In
International Conference on Software Reuse, 2006

[13] H. A. Nguyen, A. T. Nguyen, T. T. Nguyen, T. N.
Nguyen, and H. Rajan, “A study of repetitiveness of
code changes in software evolution,” In Automated
Software Engineering (ASE), 2013 IEEE/ACM 28th
International Conference on, 2013.

[14] T. T. Nguyen, H. A. Nguyen, J. M. Al-Kofahi, N. H.
Pham, and T. N. Nguyen, “ Scalable and incremental
clone detection for evolving software,” In IEEE
International Conference on Software Maintenance,
2009.

[15] R. K. Saha, C. K. Roy, K. A. Schneider, and D. E. Perry,
“Understanding the evolution of type-3 clones: an
exploratory study,” In Mining Software Repositories
(MSR), 2013 10th IEEE Working Conference on, 2013.

[16] Y. Tao, Y. Dang, T. Xie, D. Zhang, and S. Kim, “How
do software engineers understand code changes?: An
exploratory study in industry,” In Proc. of FSE, 2012

Journal of Multimedia Information System VOL. 4, NO. 4, December 2017(pp. 255-262): ISSN 2383-7632(Online)
http://dx.doi.org/10.9717/JMIS.2017.4.4.255

261

Authors

Young-Woo Kwon is an assistant
professor at the School of Computer
Science and Engineering at Kyungpook
National University. Prior to coming to
KNU, he was an assistant professor at the
Department of Computer Science at Utah
State University. He received his PhD in
Computer Science in 2014 from Virginia
Tech. His research interests span Mobile
Computing, Cloud-Based Systems, and

Software Engineering, as applied to Middleware, Energy
Efficiency, and Software Refactoring.

Myoungkyu Song is an assistant
professor at the Computer Science
Department at the University of
Nebraska at Omaha since 2015. Prior to
coming to UNO, he was a postdoc in the
Center for Advanced Research in
Software Engineering (ARiSE) at the
Department of Electrical and Computer
Engineering at the University of Texas at
Austin. He received his Ph.D. in

Computer Science in May 2013 from Virginia Tech. One of his
chief research interests is programmer productivity, which spans
the spectrum from software engineering to program analysis,
addressing related issues to make it easier to develop, maintain,
and evolve large scale software systems.

Which Code Changes Should You Review First?: A Code Review Tool to Summarize and Prioritize Important Software Changes.

262

