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I. INTRODUCTION 
 

The rapid development of embedded processors are 

enabling technologies for various Internet of Things (IoT) 

services including autonomous vehicle, surveillance systems 

and home automation. In order to utilize the IoT services, 

the massive data packets from deployed IoT devices are 

gathered and processed to extract the information. Since 

data contains sensitive and private information, secure 

wireless network communications is important for IoT 

devices. 

The well-known cryptography protocol is to use block 

cipher based authenticated encryption (AE), which ensures 

data integrity, authentication and confidentiality. Among 

many AE technologies, the Galois/Counter Mode of operation 

(GCM) is a well-known algorithm in network security. 

GCM is a standard in NASA Suite B, IETF IPSec, IEEE 

802.1 and TLS due to its efficient computation and high 

security. However, GCM is vulnerable toward a short 

authentication tag, introducing a high probability of 

successful forgery attacks in certain cases. The vulnerability 

raises questions about secure modes of operation. In order to 

resolve the security problem, a variant of GCM, namely, the 

Sophie Germain Counter Mode of operation (SGCM) is 

available [1]. The SGCM utilizes prime field (known as 

Sophie Germain prime) multiplication, instead of the binary 

field multiplication, which is secure against forgery attacks 

that GCM is vulnerable. Similarly, SGCM has the identical 

GCM computation structure, except for the GHASH 

function. Unlike GCM, 128-bit prime field multiplication is 

required to perform the GHASH function. However, recent 

works on IoT processors (ARM–NEON) only cover GCM 
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Abstract 

In this paper, we introduce novel techniques to improve the high performance of AE functions on modern high-end IoT 

platforms (ARM–NEON), which support SIMD and cryptography instruction sets. For the Sophie Germain Counter Mode of 

operation (SGCM), counter modes of encryption and prime field multiplication are required. We chose the Montgomery 

multiplication for modular multiplication. We perform Montgomery multiplication in a parallel way by exploiting both the 

ARM and NEON instruction sets. Specifically, the NEON instruction performed 128-bit integer multiplication and the ARM 

instruction performed Montgomery reduction, simultaneously. This approach hides the latency for ARM in the NEON 

instruction set. For a high-speed counter mode of encryptions for both AE functions, we introduced two-level computations. 

When the tasks were large volume, we switched to the NEON instruction to execute the encryption operations. Otherwise, we 

performed the encryptions on the ARM module. 
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implementations. In this paper, we first suggest new SGCM 

results on ARM–NEON processors. We used Montgomery 

multiplication for prime field multiplication. For high 

performance, we used both ARM and NEON instruction sets 

in a parallel way. In particular, the NEON instruction 

computes integer multiplication while the ARM instruction 

computes Montgomery reduction. For counter modes of 

encryption, we introduced two-level encryption techniques. 

For small tasks, the ARM instruction performs the 

encryption. When the number of encryptions exceeds 

multiple times of 12, the NEON instruction computes 12 

encryptions at once. With these optimization techniques, we 

achieved high-speed SGCM on ARM–NEON processors. 

This paper is organized as follows. In Section II, we 

introduce the previous cryptography implementations on 

ARM–NEON. In Section III, we present implementation 

techniques in terms of prime field multiplication and block 

cipher encryption on the ARM–NEON platform. In Section 

IV, we evaluate the performance and compare the results 

with previous works. Finally, we conclude the paper in 

Section V. 

 
 
II. RELATED WORKS 

 

The first evaluation of cryptographic algorithms on the 

ARM–NEON architecture was reported by Bernstein and 

Schwabe [2] in CHES'12. The authors showed that the 

NEON instruction set supports high-security elliptic curve 

cryptography (Curve25519) at surprisingly high speeds. 

They also summarized the useful NEON instructions set and 

efficient vectorized register handling for high-speed 

cryptography, and presented the experimental results for the 

NaCl library on a Cortex A8 processor. In 2013, Camara et 

al. [3] employed the vmull.p8 instruction to describe a novel 

software multiplier for performing a 64-bit polynomial 

multiplication and a fast software binary field 𝐹2𝑚 

multiplication on the ARM–NEON architecture. Their 

implementation results emphasized the advantage of NEON 

instruction for high-speed binary ECC and GCM.  

In SAC'13, Bos et al. [4] presented a parallel approach to 

compute interleaved Montgomery multiplication, which is 

suitable for SIMD architectures including NEON, SSE, and 

AVX. Seo et al. [5] revisited Bos et al.'s work [4], and 

introduced the Cascade Operand Scanning (COS) method 

for multi-precision multiplication with the goal of reducing 

read-after-write (RAW) dependencies in the propagation of 

carries and the number of pipeline stalls. As a follow-up 

work, Seo et al. [6] proposed a novel Double Operand 

Scanning (DOS) method to speed-up multi-precision 

squaring with non-redundant representations on SIMD 

architecture and investigated RSA-1024 and RSA-2048 on 

an ARM Cortex A9 and A15 cores. Recently, Azarderakhsh 

et al. [7] presented efficient techniques of lattice-based 

cryptography and ring-LWE implementation on ARM–

NEON architecture. 

Besides public-key algorithms, cryptographic engineers 

also evaluated the impact of performance using symmetric 

block ciphers on the ARM–NEON architecture. In [8], the 

authors proposed a parallel implementation of block cipher 

LEA on ARM–NEON and achieved a speed-up of roughly 

50% compared to the previous fastest implementation on 

ARM without NEON engine. As a follow up work, Seo et al. 

[8] proposed optimized LEA encryption by performing 

ARM and NEON instructions in a mixed processing way, 

which hides the latency of the ARM instruction in NEON 

overheads. In 2014, Saarinen and Brumley [9] presented the 

results of authenticated encryption algorithm such as 

WhirlBob and StriBob on the NEON platform. In CT-

RSA'15, Gouvea and Lopez [10] used NEON instructions 

vmull to multiply two 64-bit binary polynomials and 

presented an optimized yet timing-resistant implementation 

of GCM over AES-128 on ARMv8.  

In our work, we first present SGCM implementations on 

the ARM–NEON architecture. We present several 

optimizations of NEON instruction and an implemented 

mode of operations together with recent high-speed LEA 

implementations [8]. 

 

 

III. PROPOSED IMPLEMENTATIONS 
 

Prime field multiplication is used to perform integer 

multiplication and modular reduction. For integer 

multiplication, we need to consider the representation 

between redundant and non-redundant on the SIMD 

architecture. The redundant representation avoids carry-

propagation during the middle round by leaving empty bits 

in the word to keep carry bits. In the last round, we handle 

the carry bits to get the results in non-redundant 

representation. This is an efficient approach for the SIMD 

architecture since the platform does not support status flags 

(carry/borrow). For this reason, many ECC implementations 

have used redundant representation to achieve high 

performance [2]. In the SGCM operation, GHASH variables 

should be exclusive-ORed with ciphertext, which is only 

computable in non-redundant representation. However, the 

intermediate results are in redundant representation and this 

cannot be exclusive-ORed. Under redundant representation, 

the representation transitions between redundant and non-

redundant representations are required to perform an 

exclusive-OR operation in every round, which degrades the 

performance significantly. Alternatively, we selected the 

non-redundant representation and COS multiplication 

method, which is the fastest implementation ever reported in 

non-redundant representation. For modular multiplication 
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for SGCM, we performed the multiplication and modular 

reduction operations. For efficient modular reduction, there 

are two popular methods available. The first approach is fast 

reduction. Since the modulus for SGCM is constant value, 

the reduction process can be hard-coded in off-line. 

However, it requires a number of addition and subtraction 

operations to handle the carry and borrow bits in constant 

execution timing. 

The other modular reduction technique is Montgomery's 

algorithm, which was originally introduced in 1985 [11] and 

has been widely deployed in real-world applications (RSA). 

The algorithm replaces the division into the relatively cheap 

multiplication operation. Given the intermediate result of 

multiplication (A×B), the intermediate results (T) are 

multiplied by the inverse of modulus (M') and the results are 

reduced by (R) and stored into (Q). Afterwards, following 

equation ((T+Q×M)/R) is conducted. Finally, the calculation 

of the Montgomery multiplication may require a final 

subtraction of the modulus (M) to get a fully reduced result 

in the range of [0,M). In order to execute the Montgomery 

reduction, the target variables are converted into the 

Montgomery domain. The conversion is performed in the 

initial and last rounds by conducting the Montgomery 

multiplication. However, the GHASH should be bit-wise 

exclusive-ORed with ciphertext in a normal domain. In 

order to match the domain for both ciphertext and GHASH 

to the normal domain, we introduce a hybrid Montgomery 

reduction, which uses both Montgomery and normal 

domains for GHASH and ciphertext, respectively. 

We set the GHASH constant in the Montgomery domain 

(H×R) and the authentication value in the normal domain 

(A). In GHASH multiplication, the GHASH constant and 

authentication value are multiplied to output the 

intermediate results (T). Afterwards, the intermediate result 

is reduced to an authentication value (T×R
-1

) through the 

Montgomery reduction step. Since the intermediate result is 

a Montgomery domain, the authentication value is placed 

into a normal domain and the value can be directly bit-wise 

exclusive-ORed with cipher-text in a normal domain.  

This computation is optimized again through instruction 

set optimizations. We mix-used both ARM and NEON 

instructions to perform modular multiplication in a parallel 

way. Since the ARM and NEON are independent modules, 

two different routines are issued simultaneously. The NEON 

engine executes integer multiplication by using COS 

method while the ARM module performs the Montgomery 

reduction, which hides the latency for the ARM instructions 

in the NEON instructions. The mode of operation requires 

that GHASH function together with the block cipher 

encryption. In order to achieve high performance on the 

ARM–NEON, we selected an ARX (Addition, Rotation, 

eXclusive-OR) based block cipher, namely LEA. LEA was 

introduced in WISA'13 [12] and is efficiently computable 

Table 1. Two-level encryption technique 

input: plaintext (P), number of encryption (N), minimum number of 

parallel computation (M) 

output: ciphertext (C) 

1: Q ← N/M 

2: R ← N mod M 

3: i ← 0 

4: while Q>i do 

5:  C[M·i+M-1,…,M·i] ←ENC(P[M·i+M-1,…,M·i]) {NEON} 

6:  i ← i +1 

7: i ← 0 

8: while R>i do 

9: C[M·Q+i] ←ENC(P[M·Q+i]) {ARM} 

10: i ← i +1 

11: return C 

 

 

over the ARM–NEON processor, because the vectorized 

instruction set supports 4 32-bit ARX operations in a single 

instruction, which performs the word-wise operations of 

LEA in an efficient way [8, 11, 13]. 

In WISA'16, Seo et al. [13] further optimized the LEA 

implementations on the NEON processor. In our SGCM 

implementations, we adopted their implementations to fully 

utilize the SIMD capabilities. In order to achieve high 

performance, the block cipher encryption is performed in 

two different steps. When the number of encryptions are 

larger than the optimal number for NEON based encryption, 

we perform the encryption in NEON instruction. Afterwards, 

the remaining encryptions are performed in the ARM 

instruction because performing a small number of 

encryptions on ARM is more efficient than on NEON. The 

detailed descriptions are available in Table 1. 

In step 1–2, the optimal number of encryptions for NEON 

(Q) and ARM (R) are calculated. Afterward, the encryptions 

are first performed by NEON instruction in step 4–7. Finally, 

the remaining encryptions are performed by ARM 

instruction in step 9–12. 

 

 

IV. RESULT 
 

A. Target Platform 
 

For this study, we selected a high-end IoT architecture, 

namely ARMv7. Specifically, we executed the implementations 

on an ARM Cortex–A9 processor, which supports the full 

functionalities of the ARMv7 architecture and the NEON 

engine. ARMv7 and NEON support 32-bit and 64/128-bit 

wise registers, respectively. 
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Table 2. Results of binary/prime field multiplication in clock cycles on 

ARM Cortex–A9 platforms 

Binary field multiplication 

(GCM) [3] 

Prime field multiplication 

(SGCM) proposed 

201.97 173.79 

 

 

Table 3. Results of SGCM in cycles/byte on ARM Cortex–A9 platform 

(version 1: ARM only LEA, version 2: 2-level ARM/NEON) 

Length LEA-SGCM ver1 LEA-SGCM ver2 

64 bytes 46.20 48.38 

256 bytes 34.30 22.52 

1024 bytes 31.80 15.08 

 

 

The ARMv7 instruction set performs 32-bit SISD 

operations in a single cycle. On the other hand, the NEON 

engine provides vectorized instructions in 16 8-bit, 8 16-bit, 

4 32-bit, and 2 64-bit, performing multiple data in a single 

instruction. The ARMv7 processor is widely used in high-

end IoT processors including mini computers and mobile 

devices. The proposed implementations were working on all 

ARMv7 architectures including Cortex–A7, A8, A15 

without modifications of source codes. 

 
B. Evaluation 
 

We tested our implementations on the ARM Cortex–A9 

processor, which is equivalent to the target processors used 

in previous works [3]. For fair comparison, we only 

employed a single core and the optimization level was set to 

-O3. The detailed comparison of the results is drawn in 

Tables 2 and 3 [3]. 

For the prime field multiplication operation for SGCM, 

we achieved an execution time of 173.79 clock cycles on the 

Cortex–A9 processor, while Camara et al.'s binary field 

implementation [3] required 201.97 clock cycles. Between 

the binary and prime field multiplications, the prime field 

multiplication showed better performance than the binary 

field multiplication, because the prime field multiplication 

utilizes 2 32-bit integer multiplication while the binary field 

multiplication exploits 8 8-bit polynomial multiplication. 

The original Montgomery reduction for SGCM required 

about 210 clock cycles [5]. This was much slower than the 

proposed method, because the proposed method avoids a 

number of multiplications. 

In terms of SGCM implementations, we evaluated 

various operand lengths (64, 256 and 1,024 bytes). For the 

short operand (64 bytes), two-level encryption showed 

lower performance than the traditional approach since two-

level encryption has a routine to select the proper encryption 

modes between the ARM and NEON instruction set, which 

causes some overheads. For medium length (256 bytes), the 

two-level encryption begins to show better performance 

than that of the traditional approach since the NEON 

instruction performs the LEA encryption in an efficient way. 

For the long operand (1024 bytes), the 2-level encryption 

accelerated the performance significantly. 

 

 

V. CONCLUSION 
 

In this paper, we introduced efficient implementations of 

SGCM on 32-bit ARM–NEON processors. For SGCM, 128-

bit Montgomery multiplication was performed in both ARM 

and NEON instruction sets, simultaneously. The parallel 

approach hides the small overheads in large overheads. 

Specifically, the NEON instruction computes the 

multiplication part and the ARM instruction computes the 

Montgomery reduction part, respectively. For message 

encryption, we introduced a two-level counter mode of 

operations for workload balancing. When the number of 

encryptions was smaller than the minimum number of 

NEON encryptions, the encryption operations were 

performed in the ARM instruction. On the other hand, when 

the number of encryptions was over the minimum number 

of NEON encryptions, the encryption operations were 

performed in the NEON instruction first. Afterwards, the 

remaining encryptions were performed in the ARM 

instruction. This approach increases the throughput by 

taking advantage of the NEON instruction set. By putting 

these optimization technologies together, we obtained 

compact SGCM authenticated encryption on a 32-bit ARM–

NEON processor. 
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