
 212

I. INTRODUCTION

The rapid development of embedded processors are

enabling technologies for various Internet of Things (IoT)

services including autonomous vehicle, surveillance systems

and home automation. In order to utilize the IoT services,

the massive data packets from deployed IoT devices are

gathered and processed to extract the information. Since

data contains sensitive and private information, secure

wireless network communications is important for IoT

devices.

The well-known cryptography protocol is to use block

cipher based authenticated encryption (AE), which ensures

data integrity, authentication and confidentiality. Among

many AE technologies, the Galois/Counter Mode of operation

(GCM) is a well-known algorithm in network security.

GCM is a standard in NASA Suite B, IETF IPSec, IEEE

802.1 and TLS due to its efficient computation and high

security. However, GCM is vulnerable toward a short

authentication tag, introducing a high probability of

successful forgery attacks in certain cases. The vulnerability

raises questions about secure modes of operation. In order to

resolve the security problem, a variant of GCM, namely, the

Sophie Germain Counter Mode of operation (SGCM) is

available [1]. The SGCM utilizes prime field (known as

Sophie Germain prime) multiplication, instead of the binary

field multiplication, which is secure against forgery attacks

that GCM is vulnerable. Similarly, SGCM has the identical

GCM computation structure, except for the GHASH

function. Unlike GCM, 128-bit prime field multiplication is

required to perform the GHASH function. However, recent

works on IoT processors (ARM–NEON) only cover GCM

Received 23 June 2017, Revised 20 July 2017, Accepted 07 August 2017
*Corresponding Author Hwajeong Seo (E-mail: hwajeong84@gmail.com, Tel: +82-2-760-8033)
Department of IT Convergence Engineering, Hansung University, 116, Samseongyo-ro 16-gil, Seongbuk-gu, Seoul 02876, Korea.

 http://doi.org/10.6109/jicce.2017.15.4.212 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 15(4): 212-216, Dec. 2017 Regular paper

High Performance Implementation of SGCM on High-End IoT
Devices

Hwajeong Seo*, Member, KIICE

Department of IT Convergence Engineering, Hansung University, Seoul 02876, Korea

Abstract

In this paper, we introduce novel techniques to improve the high performance of AE functions on modern high-end IoT

platforms (ARM–NEON), which support SIMD and cryptography instruction sets. For the Sophie Germain Counter Mode of

operation (SGCM), counter modes of encryption and prime field multiplication are required. We chose the Montgomery

multiplication for modular multiplication. We perform Montgomery multiplication in a parallel way by exploiting both the

ARM and NEON instruction sets. Specifically, the NEON instruction performed 128-bit integer multiplication and the ARM

instruction performed Montgomery reduction, simultaneously. This approach hides the latency for ARM in the NEON

instruction set. For a high-speed counter mode of encryptions for both AE functions, we introduced two-level computations.

When the tasks were large volume, we switched to the NEON instruction to execute the encryption operations. Otherwise, we

performed the encryptions on the ARM module.

Index Terms: ARM–NEON, Authenticated encryption, SGCM

Open Access

mailto:hwajeong84@gmail.com

High Performance Implementation of SGCM on High-End IoT Devices

http://jicce.org 213

implementations. In this paper, we first suggest new SGCM

results on ARM–NEON processors. We used Montgomery

multiplication for prime field multiplication. For high

performance, we used both ARM and NEON instruction sets

in a parallel way. In particular, the NEON instruction

computes integer multiplication while the ARM instruction

computes Montgomery reduction. For counter modes of

encryption, we introduced two-level encryption techniques.

For small tasks, the ARM instruction performs the

encryption. When the number of encryptions exceeds

multiple times of 12, the NEON instruction computes 12

encryptions at once. With these optimization techniques, we

achieved high-speed SGCM on ARM–NEON processors.

This paper is organized as follows. In Section II, we

introduce the previous cryptography implementations on

ARM–NEON. In Section III, we present implementation

techniques in terms of prime field multiplication and block

cipher encryption on the ARM–NEON platform. In Section

IV, we evaluate the performance and compare the results

with previous works. Finally, we conclude the paper in

Section V.

II. RELATED WORKS

The first evaluation of cryptographic algorithms on the

ARM–NEON architecture was reported by Bernstein and

Schwabe [2] in CHES'12. The authors showed that the

NEON instruction set supports high-security elliptic curve

cryptography (Curve25519) at surprisingly high speeds.

They also summarized the useful NEON instructions set and

efficient vectorized register handling for high-speed

cryptography, and presented the experimental results for the

NaCl library on a Cortex A8 processor. In 2013, Camara et

al. [3] employed the vmull.p8 instruction to describe a novel

software multiplier for performing a 64-bit polynomial

multiplication and a fast software binary field 𝐹2𝑚

multiplication on the ARM–NEON architecture. Their

implementation results emphasized the advantage of NEON

instruction for high-speed binary ECC and GCM.

In SAC'13, Bos et al. [4] presented a parallel approach to

compute interleaved Montgomery multiplication, which is

suitable for SIMD architectures including NEON, SSE, and

AVX. Seo et al. [5] revisited Bos et al.'s work [4], and

introduced the Cascade Operand Scanning (COS) method

for multi-precision multiplication with the goal of reducing

read-after-write (RAW) dependencies in the propagation of

carries and the number of pipeline stalls. As a follow-up

work, Seo et al. [6] proposed a novel Double Operand

Scanning (DOS) method to speed-up multi-precision

squaring with non-redundant representations on SIMD

architecture and investigated RSA-1024 and RSA-2048 on

an ARM Cortex A9 and A15 cores. Recently, Azarderakhsh

et al. [7] presented efficient techniques of lattice-based

cryptography and ring-LWE implementation on ARM–

NEON architecture.

Besides public-key algorithms, cryptographic engineers

also evaluated the impact of performance using symmetric

block ciphers on the ARM–NEON architecture. In [8], the

authors proposed a parallel implementation of block cipher

LEA on ARM–NEON and achieved a speed-up of roughly

50% compared to the previous fastest implementation on

ARM without NEON engine. As a follow up work, Seo et al.

[8] proposed optimized LEA encryption by performing

ARM and NEON instructions in a mixed processing way,

which hides the latency of the ARM instruction in NEON

overheads. In 2014, Saarinen and Brumley [9] presented the

results of authenticated encryption algorithm such as

WhirlBob and StriBob on the NEON platform. In CT-

RSA'15, Gouvea and Lopez [10] used NEON instructions

vmull to multiply two 64-bit binary polynomials and

presented an optimized yet timing-resistant implementation

of GCM over AES-128 on ARMv8.

In our work, we first present SGCM implementations on

the ARM–NEON architecture. We present several

optimizations of NEON instruction and an implemented

mode of operations together with recent high-speed LEA

implementations [8].

III. PROPOSED IMPLEMENTATIONS

Prime field multiplication is used to perform integer

multiplication and modular reduction. For integer

multiplication, we need to consider the representation

between redundant and non-redundant on the SIMD

architecture. The redundant representation avoids carry-

propagation during the middle round by leaving empty bits

in the word to keep carry bits. In the last round, we handle

the carry bits to get the results in non-redundant

representation. This is an efficient approach for the SIMD

architecture since the platform does not support status flags

(carry/borrow). For this reason, many ECC implementations

have used redundant representation to achieve high

performance [2]. In the SGCM operation, GHASH variables

should be exclusive-ORed with ciphertext, which is only

computable in non-redundant representation. However, the

intermediate results are in redundant representation and this

cannot be exclusive-ORed. Under redundant representation,

the representation transitions between redundant and non-

redundant representations are required to perform an

exclusive-OR operation in every round, which degrades the

performance significantly. Alternatively, we selected the

non-redundant representation and COS multiplication

method, which is the fastest implementation ever reported in

non-redundant representation. For modular multiplication

J. lnf. Commun. Converg. Eng. 15(4): 212-216, Dec. 2017

http://doi.org/10.6109/jicce.2017.15.4.212 214

for SGCM, we performed the multiplication and modular

reduction operations. For efficient modular reduction, there

are two popular methods available. The first approach is fast

reduction. Since the modulus for SGCM is constant value,

the reduction process can be hard-coded in off-line.

However, it requires a number of addition and subtraction

operations to handle the carry and borrow bits in constant

execution timing.

The other modular reduction technique is Montgomery's

algorithm, which was originally introduced in 1985 [11] and

has been widely deployed in real-world applications (RSA).

The algorithm replaces the division into the relatively cheap

multiplication operation. Given the intermediate result of

multiplication (A×B), the intermediate results (T) are

multiplied by the inverse of modulus (M') and the results are

reduced by (R) and stored into (Q). Afterwards, following

equation ((T+Q×M)/R) is conducted. Finally, the calculation

of the Montgomery multiplication may require a final

subtraction of the modulus (M) to get a fully reduced result

in the range of [0,M). In order to execute the Montgomery

reduction, the target variables are converted into the

Montgomery domain. The conversion is performed in the

initial and last rounds by conducting the Montgomery

multiplication. However, the GHASH should be bit-wise

exclusive-ORed with ciphertext in a normal domain. In

order to match the domain for both ciphertext and GHASH

to the normal domain, we introduce a hybrid Montgomery

reduction, which uses both Montgomery and normal

domains for GHASH and ciphertext, respectively.

We set the GHASH constant in the Montgomery domain

(H×R) and the authentication value in the normal domain

(A). In GHASH multiplication, the GHASH constant and

authentication value are multiplied to output the

intermediate results (T). Afterwards, the intermediate result

is reduced to an authentication value (T×R
-1

) through the

Montgomery reduction step. Since the intermediate result is

a Montgomery domain, the authentication value is placed

into a normal domain and the value can be directly bit-wise

exclusive-ORed with cipher-text in a normal domain.

This computation is optimized again through instruction

set optimizations. We mix-used both ARM and NEON

instructions to perform modular multiplication in a parallel

way. Since the ARM and NEON are independent modules,

two different routines are issued simultaneously. The NEON

engine executes integer multiplication by using COS

method while the ARM module performs the Montgomery

reduction, which hides the latency for the ARM instructions

in the NEON instructions. The mode of operation requires

that GHASH function together with the block cipher

encryption. In order to achieve high performance on the

ARM–NEON, we selected an ARX (Addition, Rotation,

eXclusive-OR) based block cipher, namely LEA. LEA was

introduced in WISA'13 [12] and is efficiently computable

Table 1. Two-level encryption technique

input: plaintext (P), number of encryption (N), minimum number of

parallel computation (M)

output: ciphertext (C)

1: Q ← N/M

2: R ← N mod M

3: i ← 0

4: while Q>i do

5: C[M·i+M-1,…,M·i] ←ENC(P[M·i+M-1,…,M·i]) {NEON}

6: i ← i +1

7: i ← 0

8: while R>i do

9: C[M·Q+i] ←ENC(P[M·Q+i]) {ARM}

10: i ← i +1

11: return C

over the ARM–NEON processor, because the vectorized

instruction set supports 4 32-bit ARX operations in a single

instruction, which performs the word-wise operations of

LEA in an efficient way [8, 11, 13].

In WISA'16, Seo et al. [13] further optimized the LEA

implementations on the NEON processor. In our SGCM

implementations, we adopted their implementations to fully

utilize the SIMD capabilities. In order to achieve high

performance, the block cipher encryption is performed in

two different steps. When the number of encryptions are

larger than the optimal number for NEON based encryption,

we perform the encryption in NEON instruction. Afterwards,

the remaining encryptions are performed in the ARM

instruction because performing a small number of

encryptions on ARM is more efficient than on NEON. The

detailed descriptions are available in Table 1.

In step 1–2, the optimal number of encryptions for NEON

(Q) and ARM (R) are calculated. Afterward, the encryptions

are first performed by NEON instruction in step 4–7. Finally,

the remaining encryptions are performed by ARM

instruction in step 9–12.

IV. RESULT

A. Target Platform

For this study, we selected a high-end IoT architecture,

namely ARMv7. Specifically, we executed the implementations

on an ARM Cortex–A9 processor, which supports the full

functionalities of the ARMv7 architecture and the NEON

engine. ARMv7 and NEON support 32-bit and 64/128-bit

wise registers, respectively.

High Performance Implementation of SGCM on High-End IoT Devices

http://jicce.org 215

Table 2. Results of binary/prime field multiplication in clock cycles on

ARM Cortex–A9 platforms

Binary field multiplication

(GCM) [3]

Prime field multiplication

(SGCM) proposed

201.97 173.79

Table 3. Results of SGCM in cycles/byte on ARM Cortex–A9 platform

(version 1: ARM only LEA, version 2: 2-level ARM/NEON)

Length LEA-SGCM ver1 LEA-SGCM ver2

64 bytes 46.20 48.38

256 bytes 34.30 22.52

1024 bytes 31.80 15.08

The ARMv7 instruction set performs 32-bit SISD

operations in a single cycle. On the other hand, the NEON

engine provides vectorized instructions in 16 8-bit, 8 16-bit,

4 32-bit, and 2 64-bit, performing multiple data in a single

instruction. The ARMv7 processor is widely used in high-

end IoT processors including mini computers and mobile

devices. The proposed implementations were working on all

ARMv7 architectures including Cortex–A7, A8, A15

without modifications of source codes.

B. Evaluation

We tested our implementations on the ARM Cortex–A9

processor, which is equivalent to the target processors used

in previous works [3]. For fair comparison, we only

employed a single core and the optimization level was set to

-O3. The detailed comparison of the results is drawn in

Tables 2 and 3 [3].

For the prime field multiplication operation for SGCM,

we achieved an execution time of 173.79 clock cycles on the

Cortex–A9 processor, while Camara et al.'s binary field

implementation [3] required 201.97 clock cycles. Between

the binary and prime field multiplications, the prime field

multiplication showed better performance than the binary

field multiplication, because the prime field multiplication

utilizes 2 32-bit integer multiplication while the binary field

multiplication exploits 8 8-bit polynomial multiplication.

The original Montgomery reduction for SGCM required

about 210 clock cycles [5]. This was much slower than the

proposed method, because the proposed method avoids a

number of multiplications.

In terms of SGCM implementations, we evaluated

various operand lengths (64, 256 and 1,024 bytes). For the

short operand (64 bytes), two-level encryption showed

lower performance than the traditional approach since two-

level encryption has a routine to select the proper encryption

modes between the ARM and NEON instruction set, which

causes some overheads. For medium length (256 bytes), the

two-level encryption begins to show better performance

than that of the traditional approach since the NEON

instruction performs the LEA encryption in an efficient way.

For the long operand (1024 bytes), the 2-level encryption

accelerated the performance significantly.

V. CONCLUSION

In this paper, we introduced efficient implementations of

SGCM on 32-bit ARM–NEON processors. For SGCM, 128-

bit Montgomery multiplication was performed in both ARM

and NEON instruction sets, simultaneously. The parallel

approach hides the small overheads in large overheads.

Specifically, the NEON instruction computes the

multiplication part and the ARM instruction computes the

Montgomery reduction part, respectively. For message

encryption, we introduced a two-level counter mode of

operations for workload balancing. When the number of

encryptions was smaller than the minimum number of

NEON encryptions, the encryption operations were

performed in the ARM instruction. On the other hand, when

the number of encryptions was over the minimum number

of NEON encryptions, the encryption operations were

performed in the NEON instruction first. Afterwards, the

remaining encryptions were performed in the ARM

instruction. This approach increases the throughput by

taking advantage of the NEON instruction set. By putting

these optimization technologies together, we obtained

compact SGCM authenticated encryption on a 32-bit ARM–

NEON processor.

ACKNOWLEDGMENTS

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIT) (No. NRF-2017R1C1B5075742).

REFERENCES

[1] M. J. O. Saarinen, “SGCM: the Sophie Germain Counter Mode,”

2011 [Internet], Available: https://eprint.iacr.org/2011/326.pdf.

[2] D. J. Bernstein and P. Schwabe, “NEON crypto,” in

Cryptographic Hardware and Embedded Systems–CHES 2012.

Heidelberg: Springer, pp. 320–339, 2012.

[3] D. Camara, C. P. Gouvea, J. Lopez, and R. Dahab, “Fast software

polynomial multiplication on ARM processors using the NEON

engine,” in CD-ARES 2013: Security Engineering and Intelligence

Informatics. Heidelberg: Springer, pp. 137–154, 2013.

[4] J. W. Bos, P. L. Montgomery, D. Shumow, and G. M. Zaverucha,

J. lnf. Commun. Converg. Eng. 15(4): 212-216, Dec. 2017

http://doi.org/10.6109/jicce.2017.15.4.212 216

“Montgomery multiplication using vector instructions,” in

Selected Areas in Cryptography–SAC 2013. Heidelberg: Springer,

pp. 471–489, 2013.

[5] H. Seo, Z. Liu, J. Groschadl, J. Choi, and H. Kim, “Montgomery

modular multiplication on ARM-NEON revisited,” in Information

Security and Cryptology–ICISC 2014. Cham: Springer

International Publishing, pp. 328–342, 2014.

[6] H. Seo, Z. Liu, J. Groschadl, and H. Kim, “Efficient arithmetic on

ARM-NEON and its application for high-speed RSA

implementation,” Security and Communication Networks, vol. 9,

no. 18, pp. 5401–5411, 2016.

[7] R. Azarderakhsh, Z. Liu, H. Seo, and H. Kim, “NEON PQCryto:

fast and parallel ring-LWE encryption on ARM NEON

architecture,” 2015 [Internet], Available: https://eprint.iacr.org/

2015/1081.pdf.

[8] H. Seo, Z. Liu, T. Park, H. Kim, Y. Lee, J. Choi, and H. Kim,

“Parallel implementations of LEA,” in Information Security and

Cryptology–ICISC 2013. Cham: Springer International Publishing,

pp. 256–274, 2013.

[9] M. J. O. Saarinen and B. B. Brumley, “Lighter, faster, and

constant-time: WhirlBob, the Whirlpool variant of StriBob,” 2014

[Internet], Available: https://eprint.iacr.org/2014/501/20141108:160918.

[10] C. P. Gouvea and J. Lopez, “Implementing GCM on ARMv8,” in

Topics in Cryptology–CT-RSA 2015. Heidelberg: Springer, pp.

167–180, 2015.

[11] P. L. Montgomery, “Modular multiplication without trial division,”

Mathematics of computation, vol. 44, no. 170, pp. 519–521, 1985.

[12] D. Hong, J. K. Lee, D. C. Kim, D. Kwon, K. H. Ryu, and D. G.

Lee, “LEA: a 128-bit block cipher for fast encryption on common

processors,” in WISA 2013: Information Security Applications.

Cham: Springer International Publishing, pp. 3–27, 2013.

[13] H. Seo, T. Park, S. Heo, G. Seo, B. Bae, Z. Hu, L. Zhou, Y.

Nogami, Y. Zhu, and H. Kim, “Parallel implementations of LEA,

revisited,” in WISA 2016: Information Security Applications.

Cham: Springer International Publishing, pp. 318–330, 2016.

received the B.S.E.E. degree in 2010, and the M.S. degree in 2012 and the Ph.D. degree in 2016 in Pusan National
University. He is currently an assistant professor in Hansung University.

https://eprint.iacr.org/2014/501/20141108:160918

