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I. INTRODUCTION 
 

Wearable inertial sensors have been predominantly 

applied to analyze various aspects of human ambulatory 

abilities under free-living conditions. Due to the capabilities 

of continuous and unobstructed monitoring of daily 

activities, the wearable gait analysis approach has been 

widely adopted in a number of fields such as biomechanics, 

rehabilitation, and sports medicine [1, 2]. Moreover, the 

development of inertial sensor-based gait recognition 

approaches emerged simultaneously with the dramatic 

evolution of ambient smart devices that have become a 

commercial and academic standard [3]. Multivariate human 

gait signals were collected by wearable sensors, and the 

signals were analyzed to provide the kinetic characteristics 

of human locomotion in daily life. In this manner, 

underlying gait characteristics that were difficult to directly 

observe could be discovered.  

The majority of previous studies focused on stable 

walking such as level walking. Little information is 

available on gait mechanisms on unstable walking surfaces, 

including moving environments such as ships or trains. The 

motion of a ship on an unstable sea surface imposes 

significant differences in walking strategy [4]. A recent 

study by Walter et al. [5] investigated the effect of a ship’s 

motion on human walking strategy and found that the 

magnitude of the ship’s motion and walking performance 

were significantly related to the ship’s directional motion. 
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Abstract 

Wearable sensor-based gait analysis has been widely conducted to analyze various aspects of human ambulation abilities 

under the free-living condition. However, there have been few research efforts on using wearable sensors to analyze human 

walking on an unstable surface such as on a ship during a sea voyage. Since the motion of a ship on the unstable sea surface 

imposes significant differences in walking strategies, investigation is suggested to find better performing wearable sensor-

based gait analysis algorithms on this unstable environment. This study aimed to compare two representative gait event 

algorithms including time domain and frequency domain analyses for detecting heel strike on an unstable platform. As results, 

although two methods did not miss any heel strike, the frequency domain analysis method perform better when comparing 

heel strike timing. The finding suggests that the frequency analysis is recommended to efficiently detect gait event in the 

unstable walking environment.  
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Chang et al. [6] also found that the number of steps per day 

and the strength of each step increased during a sea voyage 

compared to the measured data while the subjects were in a 

harbor. Although the findings of some previous studies 

improved the understanding of unstable walking in unstable 

environments, there has been a lack of attention on the 

development of systematic wearable systems to analyze 

human walking in an unstable setting such as on a ship 

while sailing. Thus, there has been a growing interest in 

developing an objective gait analysis method for subjects 

living in an unstable environment that makes physical work 

difficult. Also, the validation of a wearable sensor-based gait 

analysis approach under unstable environments is essential 

to promote the successful implementation and long-term use 

of wearable systems in unstable settings.  

This study considered two representative gait event 

analyses method such as time domain and frequency domain 

analyses. The two methods have been dominantly applied to 

detect gait event in the free-living condition. Time domain 

analysis mainly deals with timings of signal peaks of initial 

contact and toe off activities [7–9]. Conversely, frequency 

domain analysis focuses on regularity of gait cycle by 

converting time series signal to frequency domain. Existing 

studies have shown that frequency domain analysis could 

be clinically relevant when investigating gait regularity 

patterns [10].  

Therefore, this study aimed to compare two representative 

gait event algorithms including time domain and frequency 

domain analysis for detecting heel strike (HS) on an 

unstable platform. Acceleration data from a single chest-

worn accelerometer have been applied to two methods. 

Since unstable gait required higher effort to maintain 

balance [4–6], the chest-worn sensor could provide better 

understanding of gait pattern in the unstable condition. 

However, HSs as a good indicator of gait event initiation 

can be directly measured by two ankle-worn accelerometers. 

Therefore, this study utilized the signal from ankle sensors 

as standard criteria of gait event timing. The number of 

steps and timing of gait events collected by the chest 

acceleration analysis algorithm were compared with the 

results obtained from the ankle acceleration-based gait 

detection algorithm in both stable and unstable walking 

conditions.   

 

 

II. METHODS 

A. Data Collection 
 

In total, 36 healthy individuals between the ages of 22 

and 36 years participated in the study. The descriptive 

characteristics of the participants areshown in Table 1. 

Before initiating the experimental protocol, participants 

Table 1. Descriptive characteristics of participants 

 Harbor (n=13) Sea (n=23) 

Sex (female:male) 1:12 3:20 

Age (yr) 24.2 ± 3.4 23.8 ± 2.7 

BMI (kg/m2) 24.1 ± 2.3 23.6 ± 2.6 

Height (cm) 174.7 ± 6.4 174.3 ± 6.3 

Weight (kg) 73.6 ± 8.8 72.0 ± 10.2 

Values are presented as mean ± SD. 

 

 

filled out a health history form and signed an informed 

consent approved by the Institutional Review Board at the 

University of Nebraska Medical Center (IRB No. 273-16-

EP). Thirteen of the 36 participants walked in a stable 

condition when the ship was in harbor. The remaining 23 

participants walked in an unstable condition during a sea 

voyage. In both experiments, participants walked along a 

straight line on the main deck of the training ship of Mokpo 

National Maritime University at a self-selected speed.  

To collect acceleration data, participants wore three small 

and lightweight 3-axis accelerometers called Shimmer3 [11]. 

One sensor was attached to the chest and the others were 

attached to each ankle. Attachment of wearable sensors on 

lower limbs such as ankles and knee have been preferred to 

detect gait event in many studies [2, 3], and the attachments 

are proper to get lower limb motor control [12, 13]. Con-

versely, attachment of the sensors on the upper body such as 

chest and waist are preferred to investigate gait balance 

abilities such as posture control and upper body sway [14]. 

Since the unstable walking condition of this study requires 

more effort on balance control capability on waves, upper 

body attachment was selected in this study. 

The acceleration ranges of the chest-worn and ankle- 

worn sensors were set to 4 g and 8 g, respectively. The 

accelerometers were fixed with an elastic band strap, and 

were sampled at 100 Hz. The accelerometers were 

synchronized at the beginning of the data collection. 

 

B. Gait Recognition 
 

The two methods have been implemented to recognize 

gait event. Fig. 1 illustrates a framework for time and 

frequency domain analyses to detect gait event by using data 

from chest-worn sensor. Validation of results from two 

methods performed using direct heel-strike measure from 

ankle-worn sensors.  

In time domain analysis, three types of gait recognition 

methods including a zero-velocity update, a correlation-

calculation method, and a peak detection method have been 

used in the wearable sensor-based gait analysis approach [15, 

16]. The peak detection method, which detects maximum 

peaks or minimum valleys of acceleration data using  
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Fig. 1. A framework for time and frequency domain analyses to detect 

gait event by using data from chest-worn sensor; validation of results from 
two methods using direct heel-strike measure from ankle-worn sensors. 

 

 

thresholds, was chosen in this study because the method 

requires minimum computation to recognize gait events. 

Since HS is the most important event for gait recognition, 

two thresholds including the minimum-peak height (or the 

maximum-valley height) and the minimum distance were 

used to analyze the collected raw acceleration data. For the 

acceleration data collected from the chest and left ankle 

sensors, the minimum-peak height was used to find peaks 

greater than the minimum-peak height that was the mean 

value of anterior accelerations. For the acceleration data 

from the right ankle sensor, on the other hand, the 

maximum-valley height was used to find valleys smaller 

than the maximum-valley height, since the sensor’s 

orientation of the right ankle is opposite. The minimum 

distance was also used to find peaks or valleys where the 

distances between two peaks or two valleys were longer 

than the minimum distance. The recognized gait events from 

the two ankle sensors were used as important criteria of the 

gait event. The gait event results were then used to validate 

the chest sensor-based gait recognition outcomes.  

Chest acceleration data were converted to a frequency 

domain representation using fast Fourier transform (FFT). 

The FFT converts a time domain acceleration signal into the 

frequency domain by representing the acceleration as a 

series of sinusoids. After being converted to the frequency 

domain, amplitude, power, and phase spectrums were 

created for each participants using a custom MATLAB 

environment (MathWorks Inc., Natick, MA, USA). The power 

spectrum revealed that vertical directional acceleration 

among three dimensional data was efficient to recognize gait 

events. For the vertical acceleration data, the majority of the 

signal energy was included in the two dominant frequencies 

(i.e., 1.8 Hz and 3.7 Hz) with significantly large amplitude. 

When we consider average step time between 0.5 and 0.7 

seconds, frequency about 1.8 Hz could well represent gait 

event cycles. The number and timing of detected steps from 

the two methods have been analyzed. 

 

 
III. RESULTS 

 

Overall, two methods accurately detect HS in both stable 

and unstable conditions. The accuracies of detecting HSs in 

an unstable walking condition were comparable with the 

detection accuracies in a stable walking condition in a 

harbor. Fig. 2 presents raw acceleration data with gait 

detection results from two representative participants to 

explain the main differences between the harbor and sea 

experiments. The acceleration data from the harbor 

condition walking are shown in Fig. 2(a)–(c). The 

acceleration graphs from the stable condition showed 

regular patterns in terms of peak patterns. The unstable 

walking acceleration data are depicted in Fig. 2(d)–(f). As 

depicted in Fig. 2, significant agreement was observed in 

detecting HS events in both stable and unstable condition 

experiments. Outcomes of the FFT method were also 

compared to ankle-based direct HS measure (see Fig. 3). 

The number of steps recognized by FFT between the 

detected HS from the chest sensor and ankle sensors were 

consistent from both methods in unstable walking 

conditions on a ship.  

Validation of results from two methods was conducted by 

comparing the number of computed HSs and timing of each 

steps. Directly measured HSs from ankle sensors used to 

determine agreement of two methods. Table 2 summarizes 

the comparison results. Although there was moderate ship 

motion during the sea condition experiments, the chest 

acceleration analysis method missed only one HS event over 

60 HSs. The main difference of the sea walking gait patterns 

compared to the harbor walking gait events was the 

inconsistent step tempo. Although the average step times of 

the harbor and sea walking scenarios were similar (see Table 

2), a wider variation of the gait tempo in the sea walking 

experiment was observed. 

Moreover, the variation caused by the timing gap of the 

HS detection between the chest and ankle systems. The HS 

detection timing of the chest sensor in the sea walking was 

not aligned as accurately as that of the harbor HS detection. 

We concluded that this was caused by additional upper body 

movements to maintain stability during walking. It was 

found that strategies to maintain balanced and stable 

walking on an unstable surface inherently constrain the gait 

speed and energetic efficiency by adjusting the step tempo 

and step width [17, 18]. 
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Fig. 2. Time domain analysis: acceleration patterns of two representative subjects. (a), (b), and (c) were acceleration data from the harbor. (d), (e), and 

(f) were acceleration data from sea experiments. Red triangles indicate recognized HS from raw acceleration data. 

 

 
Fig. 3. Frequency domain analysis: (a) raw three dimensional acceleration data, (b) single-side amplitude spectrum of vertical acceleration, (c) original 

acceleration and 1.9 Hz removed acceleration data after inverse FFT, and (d) recognized peak indicating with red circles by calculating gap between 
original and inversed acceleration. 
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The number of recognized HSs from peak detection and 

FFT methods were almost perfect agreement (99.9%). 

However, FFT reliably capture HSs than peak detection 

method. In the last row of Table 2, time difference between 

ankle and chest data and standard deviation of the HS time 

difference are shown. FFT showed less fluctuation in HS 

recognition than peak detection method. This may be more 

irregular HS magnitude interfere to calculate a good 

threshold of the peak detection method. While FFT is able 

to the frequency of step cycles, so instant irregular HS 

magnitude does not results in crucial failure of HS detection.  

Additionally, the mean of the gap differences in the 

harbor and the sea conditions was about 34 ms and 49 ms, 

respectively. For the mean gaps of the HS timing differences, 

the calculated values in the harbor and sea conditions were 

6.3% and 9.1%, respectively. The differences between two 

sensor attachments were not significant, and therefore we 

can determine the effectiveness of the upper-based gait 

detection method. The standard deviation of the timing 

differences per each participant by using two different 

conditions was almost the same, and the similar variation in 

timing differences implies that the peak detection-based gait 

recognition has reasonable inter-subject reliability regardless 

of the differences in personal gait patterns. 

 

 

IV. DISCUSSION AND CONCLUSIONS 
 

In this paper, we compared two wearable sensor-based 

gait recognition methods in an unstable walking condition. 

The experimental results confirmed that frequency domain 

analysis (i.e., FFT algorithm) achieved more reliable heel 

strike detection accuracy than time domain analysis (i.e., 

peak detection algorithm). The finding suggests that the 

frequency analysis is recommended to efficiently detect gait 

event in the unstable walking environment. The key 

contribution of this study is to provide initial evidence for 

selecting appropriate gait event detection method in an 

unstable platform. Future work will include the investigation 

of gait characteristics in relation to gait adaptation to an 

unstable environment.  
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