DOI QR코드

DOI QR Code

Antioxidant and antimicrobial activities of ginger with aging and fermentation

발효숙성생강의 항산화 및 항균 활성

  • Seo, Young-Ho (Department of Food and Nutrition, Wonkwang Health Science University)
  • 서영호 (원광보건대학교 식품영양과)
  • Received : 2017.12.06
  • Accepted : 2017.12.18
  • Published : 2017.12.30

Abstract

Zingiber officinale Roscoe, commonly known as ginger, has long been used as a powerful health-promoting antioxidant that supports cellular health of the human body. The objective of this study was to compare the antioxidant and antimicrobial activities of the samples with aging and fermentation. Antioxidant activities of the samples were compared using total phenol, flavonoid contents, ABTS cation radical scavenging activity and DPPH radical scavenging activity. Antimicrobial activities were also examined using the paper disc method and minimum inhibitory concentration (MIC). Acidity of the fermented ginger (FG) with lactic acid bacteria showed a significantly higher value than that of the ginger (GG). The content of 6-gingerol, a bioactive component in ginger, decreased in all fermented gingers but 6-shogaol which is also one of the main valuable ingredients showed the increased content at ginger fermented with Streptococcus thermophilus and Lactobacillus acidphilus. Flavonoid contents of the FG and GG did not show significant differences. However, ABTS cation radical scavenging activity and DPPH radical scavenging activity were 10-30% increased in the samples with fermentation (p<0.05), respectively. The samples of the disc showed an inhibitory effect on growth of gram positive Staphylococcus aureus and Listeria monocytogenes. Zinger with fermentation showed higher antioxidant and antimicrobial activities. Thus, we conclude that aging and fermentation can be a helpful process to increase the functional effects of ginger.

본 연구는 생강의 천연 기능성 식품소재로서 활용성을 높이기 위해 마쇄한 생강과 숙성 후 발효시킨 생강을 이용하여 항산화 및 항균활성의 특성을 비교하였다. 생강 추출물의 pH는 6.68 산도는 0.39로 나타났으며, 생강을 발효숙성 시켰을 때 pH는 감소하였으나, 산도는 전반적으로 증가하였다. 일반 생강의 6-gingerol 함량은 $404.8{\mu}g/g$ 이었으며, 6-shogaol은 검출되지 않았으나, 발효숙성생강 추출물의 6-shogaol 함량은 $128.8-196.4{\mu}g/g$로 증가하여 발효숙성 과정 중 6-gingerol이 6-shogaol로 변환되었음을 확인할 수 있었다. 총 페놀함량과 총 플라보노이드 함량 분석결과, 일반생강 추출물의 총페놀 함량이 높았으며, 총 플라보노이드 함량의 유의차는 없었다. ABTS 활성소거능은 발효숙성 생강이 88.11-101.32%로 65.43%의 일반생강 추출물보다 유의적으로 높았으며, DPPH radical 소거능도 발효숙성생강 추출물이 10-20% 정도 유의적으로 높은 결과를 보였으며(p<0.05) 특히 S. thermophilus로 발효한 생강에서 가장 높았다. 일반생강과 발효숙성생강 추출물의 항균효과를 확인하고 활성의 차이를 비교하기 위하여 실시한 디스크확산법에 의한 결과는 그람양성균인 S. aureus와 L. monocytogenes 균주에서 발효숙성생강 추출물의 항균활성이 유의적으로 더 높은 것을 확인하였으며, 특히 L. brevis로 발효시킨 추출물의 항균효과가 가장 높았다. 또한 그람음성균인 Salmonella spp. 균주에서도 일반생강에서는 clear zone이 관찰되지 않았으나, 발효숙성생강 추출물에서는 1.88-2.51 cm의 clear zone을 확인하였다. 하지만 E. coli에서는 clear zone이 관찰되지 않았다. 최소억제농도인 MIC 결과 항균효과를 위해 발효숙성생강보다 일반생강에서 보다 많은 양의 시료가 요구 되는 것으로 나타났다. 본 연구 결과 생강을 숙성 후 발효시키면 천연기능성 식품소재로서 radical 소거 및 항균활성이 높게 측정되었음을 확인하였으며, 발효 중 생강의 매운맛이 감소되었을 것으로 판단되어 향후 식품산업에서 발효숙성생강을 이용할 때 항산화 및 항균성의 기초자료가 될 것으로 여겨진다.

Keywords

References

  1. Kim NM, Lee JS (2003) Effect of fermentation periods on the qualities and physiological functionalities of the mushroom fermentation broth. Korean J Mycol, 31, 28-33 https://doi.org/10.4489/KJM.2003.31.1.028
  2. Lee YN (1996) Flora of Korea. Kyohaksa Co, Seoul, Korea, p 1107-1109
  3. Lim TS, Kwon OJ, Kwon JH, Kim HG (2007) Monitoring of extraction yields and functional properties of ginger (Zingiber officinale) extracts using response surface methodology. J Korean Soc Food Sci Nutr, 36, 348-354 https://doi.org/10.3746/jkfn.2007.36.3.348
  4. Jo MH, Ham IK, Lee GH, Lee JK, Lee GS, Park SK, Kim TI, Lee EM (2011) Composition of active ingredients between field grown and in vitro cultured rhizome of Korean nagative ginger (Zinigiber officinale Roscoe). Korean J Plant Res, 24, 404-412 https://doi.org/10.7732/kjpr.2011.24.4.404
  5. Kim JS, Koh MS, Kim MK, Hong JS (1991) Volatile flavor components of Korean ginger (Zingiber officinale Roscoe). Korean J Food Sci Technol, 23, 141-149
  6. Shin DH (1994) Survey on consumer concept and acceptability of convenient ginger product. Korea J Diet Culture, 9, 323-327
  7. Connell DW, Sutherland MD (1969) A re-examination of gingerol, shogaol, and zingerone the pungent principles of ginger (Zingiber officinale Roscoe). Aust J Chem, 22, 1033-1043 https://doi.org/10.1071/CH9691033
  8. Connell DW (1970) The chemistry of the essential oil and oleoresin of ginger (Zingiber officinale Roscoe). Flavour Ind, 1, 677-693
  9. Lee BS, Ko MS, Kim HJ, Kwak IS, Kim DH, Chung BW (2006) Separation of 6-gingerol from ginger (Zingiber officinale Roscoe) and antioxidative activity. Korean J Biotechnol Bioeng, 21, 484-488
  10. Lee IK, Ahn SY (1985) The antioxidant activity of gingerol. Korean J Food Sci Technol, 17, 55-59
  11. Hong JH (1989) Studies on the antioxidant activity of natural spices. MS thesis, Korea University, Korea p 11-32
  12. Fujio H, Hiyoshi A, Asari T, Suminoe K (1969) Studies on the preventive method of lipid oxidation in freeze dried foods. Nippon Shokuhin Kogyo Gakka, 16, 241-246 https://doi.org/10.3136/nskkk1962.16.241
  13. Kim EJ, Ahn MS (1993) Antioxidative effect of ginger extracts. Korean J Soc Food Sci, 9, 37-42
  14. Srivastava KC (1989) Effect of onion and ginger consumption on platelet thromboxane production in humans. Prostaglandins Leukotrienes Essent Fatty Acids, 35, 183-185 https://doi.org/10.1016/0952-3278(89)90122-1
  15. Ryu HS, Kim J, Park SC, Kim HS (2004) Enhancing effect of Zingiber officinale Roscoe extracts on mouse spleen and macrophage cells activation. Korean J Nut, 37, 780-785
  16. Park KY, Lee SJ, Lee KI, Rhee SH (2005) The antitumor effect in sarcoma-180 tumor cell of mice administered with Japanese apricot, garlic, or ginger doenjang. Korean J Food Cookery Sci, 21, 599-606
  17. Van HT, Colin CD (2003) Effective anti-platelet and COX-1 enzyme inhibitors from pungent constituents of ginger. Thromb Res, 111, 259-265 https://doi.org/10.1016/j.thromres.2003.09.009
  18. Kim HS, Choi JH, Lee HJ, Jeong MC, Kim BS, Kim DM (2010) Quality characteristics of treated with mild heat and minced ginger during storage. Korean J Food Preserv, 17, 784-792
  19. Ban YJ, Baik MY, Hahm YY, Kim HK, Kim BY (2010) Optimization of processing conditions for making a black ginger and design mixture for black ginger drinks. J Food Eng, 14, 112-117
  20. Chun YG, Chung HY (2011) Quality properties of fermented gingers. Korean J Food Sci Technol, 43, 249-254 https://doi.org/10.9721/KJFST.2011.43.3.249
  21. Sin JH, Choi DJ, Lee SJ, Cha JY, Kim JK, Sung NJ (2008) Changes of physicochemical components and antioxidant antivity of garlic during its processing. J Life Sci, 18, 1123-1131 https://doi.org/10.5352/JLS.2008.18.8.1123
  22. AOAC (1980) Official methods of analysis 13th ed, Association of Official Analytical Chemists, Washington DC, USA, p 4-12
  23. Ra HN, Kim HY (2014) Quality characteristics and microbial safety of Sunsik with dandelion (Taraxacum platycarpum) complex extract powder (AF-343) for Home Meal Replacement. Korean J Food Cook Sci, 30, 642-649 https://doi.org/10.9724/kfcs.2014.30.5.642
  24. Moreno MI, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical scavenging activity of propolis from several regions of Argentica. J Ethnophamacol, 71, 109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  25. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  26. Kim YS, Jo CH, Choi GH, Lee KH (2011) Changes of antioxidative components and activity of fermented tea during fermentation period. J Korean Soc Food Sci Nutr, 40, 1073-1078 https://doi.org/10.3746/jkfn.2011.40.8.1073
  27. Shin BK, Kang SA, Han JI, Park SM (2015) Quality and sensory characteristics of fermented milk adding black carrot extracts fermented with Aspergillus oryzae. J Korean Soc Food Cult, 30, 370-376 https://doi.org/10.7318/KJFC/2015.30.3.370
  28. Lee JY, Ahn MS (1994) Changes of antioxidative properties according to the heat-treatment of ginger extracts. Korean J Soc Food Sci, 10, 63-70
  29. Jhoo JW (2008) Anti-inflammatory effects of purpurogallin carboxylic acid, an oxidation product of gallic acid in fermented tea. Korean J Food Sci Technol, 40, 707-711

Cited by

  1. Optimization of Processing Condition for Antioxidant Activities from Aged Black Ginger Using Response Surface Methodology vol.54, pp.6, 2020, https://doi.org/10.14397/jals.2020.54.6.99
  2. Neuroprotective effect of fermented ginger extracts by Bacillus subtilis in SH-SY5Y cells vol.54, pp.6, 2017, https://doi.org/10.4163/jnh.2021.54.6.618
  3. Rheological Properties of All-Purpose Flour Containing Ginger Powder and the Quality Characteristics of Its Product vol.32, pp.1, 2017, https://doi.org/10.7856/kjcls.2021.32.1.57
  4. Antioxidant Activities of Fermented Sophorae fructus, and Inhibitiory Actions on Tyrosinase and Elastase vol.50, pp.3, 2017, https://doi.org/10.3746/jkfn.2021.50.3.254
  5. Antimicrobial activity and stability of Prunus mume fruit extract against Streptococcus mutans KCCM 40105 strain vol.28, pp.3, 2017, https://doi.org/10.11002/kjfp.2021.28.3.426
  6. 과도한 운동 스트레스에 대한 숙성생강 추출물의 방어효과 vol.34, pp.4, 2017, https://doi.org/10.7732/kjpr.2021.34.4.362
  7. A new process on the basic formula of kimchi: derived kimchi from a combination of yangnyeom (kimchi sauce) and vegetables vol.8, pp.1, 2021, https://doi.org/10.1186/s42779-021-00110-7