DOI QR코드

DOI QR Code

Synthesis of ITiO(Indium Titanium Oxide) particle by sol-gel and investigation on light transmittance of deposited ITiO thin film

졸-겔법에 의한 ITiO(Indium Titanium Oxide) 입자의 합성과 ITiO 박막의 광투과도 조사

  • Go, Eun Ju (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Kim, Sang Hern (Department of Chemical & Biological Engineering, Hanbat National University)
  • 고은주 (한밭대학교 화학생명공학과) ;
  • 김상헌 (한밭대학교 화학생명공학과)
  • Received : 2017.09.28
  • Accepted : 2017.12.16
  • Published : 2017.12.30

Abstract

In this study, Indium-Titanium hydroxide particle with 0.5, 1.0, 1.5 wt% of $TiO_2$ were synthesized by sol process and adding the base, ITiO(Indium Titanium Oxide) particles were obtained by gelling at $200^{\circ}C$ and $500^{\circ}C$. The ITiO particle's size with gel process at $200^{\circ}C$ was smaller than ITiO particle's size with gel process $500^{\circ}C$. The ITiO particle with gel process at $200^{\circ}C$ was used to fabricate dense ITiO target. ITiO targets with 0.5, 1.0, 1.5 wt% of $TiO_2$ were fabricated and used to obtain ITiO thin films onto glass by sputtering. Among those sputtered ITiOs' thin films, ITiO thin film with 0.4 % of $O_2$ and 0.5 wt% of $TiO_2$ showed the lowest specific resistance, highest charge mobility and lowest carrier concentration. It was found the light transmittance of the ITiO film were increased highly compared to light transmittance of ITO (Indium Tin Oxide) thin film over Infrared wavelength ranges.

본 연구에서는 0.5, 1.0, 1.5 wt%의 $TiO_2$를 함유하는 인듐-티타늄 수산화물을 졸 및 염기 첨가에 의해 얻었고, $200^{\circ}C$$500^{\circ}C$에서 겔화 과정을 통해 ITiO(Indium Titanate Oxide)를 얻었다. $200^{\circ}C$에서 겔화 과정 후 얻어지는 ITiO 입자가 작아서 조밀성이 있는 ITiO 타겟을 제조하였다. 0.5, 1.0, 1.5 wt%의 $TiO_2$를 함유하는 ITiO 타겟을 스퍼터링하여 ITiO 박막을 유리판위에 제작하여 비저항, 전하 이동도, 캐리어 농도를 조사하였다. 이들 박막 중에서 산소 조성이 0.4 %인 조건에서 0.5 wt% 중량% $TiO_2$를 함유하는 ITiO 타겟으로부터 제작된 ITiO 박막이 가장 낮은 비저항, 가장 큰 전하이동도 및 가장 낮은 캐리어 농도를 보임을 알 수 있었고, 얻어진 ITiO 박막의 광투과율을 측정하여 적외선 영역에서 광투과율이 ITO(Indium Tin Oxide) 박막에 비해 현저히 증가함을 발견하였다.

Keywords

References

  1. T. Minami, "Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide(ITO) substitutes", Thin Solid Films, Vol. 516, No. 17, pp. 5822-5828, (2008). https://doi.org/10.1016/j.tsf.2007.10.063
  2. T. Minami, H. Nanto, and S. Takata, "Highly Conductive and Transparent Aluminum Doped Zinc Oxide Thin Films Prepared by RF Magnetron Sputtering", Jpn. J. Appl. Phys., Vol. 23, No. 1, pp. L280-L282, (1984). https://doi.org/10.1143/JJAP.23.L280
  3. T. Minami, "Transparent and conductive multicomponent oxide films prepared by magnetron sputtering", J. Vac. Sci. Technol., Vol. A17, pp. 1765-1772, (1999).
  4. T. Hara, T. Ishiguro, N. Wakiya, and K. Shinozaki, "Oxygen Sensing Properties of $SrTiO_3$ Thin Films", Jpn. J. Appl. Phys. Vol. 47, pp. 7486-7489, (2008). https://doi.org/10.1143/JJAP.47.7486
  5. T. Minami, S. Ida, and T. Miyata, "High rate deposition of transparent conducting oxide thin films by vacuum arc plasma evaporation", Thin Solid Films, Vol. 416, pp. 92-96, (2002). https://doi.org/10.1016/S0040-6090(02)00706-X
  6. F. Kurdesau, G. Khripunov, A. F. da Cunha, M. Kaelin, and A. N. Tiwari, "Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature", J. Non-Cryst. Solids, Vol. 352, pp. 1466-1470, (2006). https://doi.org/10.1016/j.jnoncrysol.2005.11.088
  7. Sung-Jei Hong, Duck Joo Yang, Seung Jae Cha, Jae-Yong Lee, and Jeong-In Han, "Feasibility of Indium Tin Oxide (ITO) Swarf Particles to Transparent Conductive Oxide (TCO)", Current Photovoltaic Research, Vol. 3, No. 2, pp. 50-53, (2015). https://doi.org/10.21218/CPR.2015.3.2.050
  8. Mi-Yeon Lee, Jeong-Soo Kim, and Jun-Ho Seo, "Radio-frequency thermal plasma synthesis of nano-sized indium zinc tin oxide powders with reduced indium content", Thin Solid Films, Vol. 521, pp. 60-64, (2012). https://doi.org/10.1016/j.tsf.2012.03.071
  9. M. Putri, C. Y. Koo, J. A. Lee, J. J. Kim, and H. Y. Lee, "Transparent conducting indium zinc tin oxide thin films with low indium content deposited by radio frequency magnetron sputtering", Thin Solid Films, Vol. 559, pp. 44-48, (2014). https://doi.org/10.1016/j.tsf.2014.02.016
  10. Jin-Woo Seo, Yang-Hee Joung, and Seong-Jun Kang, "Effect of RF power on the Electrical, Optical, and Structural Properties of ITZO (In-Sn-Zn-O) Thin Films", Journal of the Korea Institute of Information and Communication Engineering, Vol. 18, No. 2, pp. 394-400, (2014). https://doi.org/10.6109/jkiice.2014.18.2.394
  11. C. W. Ow-Yang, Y. Shigesato, and D. C. Paine, "Fabrication of transparent conducting amorphous Zn-Sn-In-O thin films by direct current magnetron sputtering", Thin Solid Films, Vol. 516, No. 10, pp. 3105-3111, (2008). https://doi.org/10.1016/j.tsf.2007.07.205
  12. C. H. Kim, Y. S. Rim, and H. J. Kim, "Chemical Stability and Electrical Performance of Dual Active Layered Zinc Tin Oxide/Indium Gallium Zinc Oxide Thin Film Transistors Using a Solution Process", ACS Appl. Mater. Interfaces, Vol. 5, No. 13, pp. 6108-6112, (2013). https://doi.org/10.1021/am400943z
  13. C. A. Hoel, D. B. Buchholz, R. P. H. Chang, and K. R. Poeppelmeier, "Pulsed-laser deposition of heteroepitaxial corundum-type ZITO: cor-$In_2$-$_{2x}Zn_xSn_xO_3$",*Thin Solid Films, Vol. 520, pp. 2938-2942, (2012). https://doi.org/10.1016/j.tsf.2011.10.012
  14. C. Li, T. Ming, Junxin Wang, Jianfang Wang, J. C. Yu., Shu-hong Yu, "Ultrasonic aerosol spray-assisted preparation of $TiO_2$/$In_2O_3$ composite for visible-light-driven photocatalysis", Journal of Catalysis, Vol. 310, pp. 84-90, (2014). https://doi.org/10.1016/j.jcat.2013.05.015
  15. Jin-A Jeong, Ye-Jin Jeon, Seok-Soon Kim, Boo Kyoung Kim, Kwun-Bum Chung, Han-Ki Kim, "Simple brushpainting of Ti-doped $In_2O_3$ transparent conducting electrodes from nano-particle solution for organic solar cells", Solar Energy Materials & Solar Cells, Vol. 122, pp. 241-250, (2014) https://doi.org/10.1016/j.solmat.2013.12.008
  16. Accarat Chaoumead, Hee-Dae Park, Bong-Hyun Joo, Dong-Joo Kwak, Min-Woo Park, Youl-Moon Sung, "Structural and Electrical Properties of Titanium-Doped Indium Oxide Films Deposited by RF Sputtering", Energy Procedia, Vol. 34, pp. 572-581, (2013) https://doi.org/10.1016/j.egypro.2013.06.787
  17. Dong-Joo Kwak, Byung-Ho Moon, Don-Kyu Lee, Cha-Soo Park and Youl-Moon Sung, "Comparison of transparent conductive indium tin oxide, titanium-doped indium oxide, and fluorine-doped tin oxide films for dye-sensitized solar cell application", Journal of Electrical Engineering & Technology, Vol. 6, No. 5, pp. 684-687, (2011). https://doi.org/10.5370/JEET.2011.6.5.684
  18. S. Panyata, S. Eitssayeam, G. Rujijanagul, T. Tunkasiri, S. Sirisoonthorn, and K. Pengpat, "Preparation of Titanium-doped Indium Oxide Films by Ultrasonic Spray Pyrolysis Method", Ferroelectrics, Vol. 454, No. 1, pp. 63-69, (2013). https://doi.org/10.1080/00150193.2013.842791
  19. Ji-In Kim, K. H. Ji, M. Jang, H. Yang, R. Choi, and J. K. Jeong, "Ti-Doped Indium Tin Oxide Thin Films for Transparent Field-Effect Transistors: Control of Charge-Carrier Density and Crystalline Structure", ACS Appl. Mater. Interfaces, Vol. 3, No. 7, pp. 2522-2528, (2011). https://doi.org/10.1021/am200388h
  20. S. A. Sergiienko and A. V. Shvets, "Effect of Iron, Titanium, Vanadium, and Indium oxides on the width of the band gap and photoluminescence intensity of mesoporous Tin oxide", Theoretical and Experimental Chemistry, Vol. 49, No. 6, pp. 396-401, (2014). https://doi.org/10.1007/s11237-014-9341-2
  21. Yoshiyuki Abe, and Noriko Ishiyama, "Transparent Oxide electrode film and manufacturing method there of, transparent electroconductive base material, solar cell and photo detection element", U. S. Patent, 0127519 A1, (2009).