DOI QR코드

DOI QR Code

Synthesis of CeO2/TiO2 core-shell Nanoparticles

CeO2/TiO2 코어-쉘 나노입자의 합성

  • Mun, Young Gil (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Park, Chang Woo (Department of Chemical & Biological Engineering, Hanbat National University) ;
  • Kim, Sang Hern (Department of Chemical & Biological Engineering, Hanbat National University)
  • 문영길 (한밭대학교 화학생명공학과) ;
  • 박장우 (한밭대학교 화학생명공학과) ;
  • 김상헌 (한밭대학교 화학생명공학과)
  • Received : 2017.09.20
  • Accepted : 2017.10.25
  • Published : 2017.12.30

Abstract

In this study, $CeO_2/TiO_2$ nanoparticle with structure of core and shell was synthesized by growing $TiO_2$ onto the surface of $CeO_2$ according to hydrolysis of $Ti(SO_4)_2$. Reaction time, temperature, concentration of $CeO_2$ slurry, pH control of $Ti(SO_4)_2$ were optimized about synthesis of $CeO_2/TiO_2$ core-shell nanoparticle. It was found that optimal mole ratio range of $CeO_2:TiO_2$ was 1:0.2~1.1, the optimal concentration of $CeO_2$ slurry was 1 %, and the optimal reaction temperature was $50^{\circ}C$. The optimal concentration of $CeO_2$ slurry could be increased up to 10 % by adjusting the pH of $Ti(SO_4)_2$ to 1 using $NH_4OH$ and adding to $CeO_2$ slurry. If reaction was carried at $80^{\circ}C$ or higher, the separated $TiO_2$ particles were obtained instead of $CeO_2/TiO_2$ core-shell nanoparticles. The optimal reaction temperature was $50^{\circ}C$ at which good shaped core-shell structure of $CeO_2/TiO_2$ was obtained.

Acknowledgement

Supported by : 중소기업청

References

  1. S. Komarneni, I. R. Abothu, and A. V. P. Rao, "Sol-gel processing of some electroceramic powders", J. Sol-Gel Sci. Techn., Vol. 15, pp. 263-270, (1999). https://doi.org/10.1023/A:1008793126735
  2. L. J. Alemany, M. A. Banares, E. Pardo, F. Martin, M. Galan-Fereres, and J. Blasco, "Photodegradation of phenol in water using silica-supported titania catalysts", Applied Catalysis B: Environmental, Vol. 13, No. 3-4, pp. 289-297, (1997). https://doi.org/10.1016/S0926-3373(97)00006-4
  3. A. Wang, Q. Peng, and Y. Li, "Rod-Shaped Au-Pd core-shell Nanostructures", Chem. Mater., Vol. 23, pp. 3217-3222, (2011). https://doi.org/10.1021/cm201023b
  4. H. Zeng, J. Li,, Z. L. Wang, J. P. Liu, and S. Sun, "Bimagnetic Core/Shell FePt/$Fe_3O_4$ Nanoparticles", Nano Letters, Vol. 4, No. 1, pp. 187-190, (2004). https://doi.org/10.1021/nl035004r
  5. I. Pastoriza-Santos, D. S. Koktysh, A. A. Mamedov, M. Giersig, N. A. Kotov, and L. M. Liz-Marzan, "One-Pot Synthesis of $Ag@TiO_2$ Core-Shell Nanoparticles and Their Layer-by-Layer Assembly", Langmuir, Vol, 16, pp. 2371-2735, (2000).
  6. E. Lori. G. M. Law, B. D. Yuhas, and P. Yang, "ZnO-$TiO_2$ Core-Shell Nanorod/P3HT Solar Cells", J. Phys. Chem. C, Vol. 111, No. 50 pp. 18451-18456, (2007). https://doi.org/10.1021/jp077593l
  7. Y. Park, J. Lee, S. Gong, W. Kim, and J. Kim, "Preparation of $SiO_2$/$TiO_2$ Core-Shell Particles Using Large-Size Silica Particles", J. Kor. Ind. Eng. Chem., Vol. 18, No. 2, pp. 183-187, (2007).
  8. T. Montini, M. Melchionna, M. Monai, and P. Fornasiero, "Fundamentals and Catalytic Applications of $CeO_2$ Based Materials", Chem. Rev., Vol. 116, No. 10, pp. 5987-6041, (2016). https://doi.org/10.1021/acs.chemrev.5b00603
  9. D. N. Correa, J. M. de Souaza e Silva, E. B. Santos, F. A. Sigoli, A. G. Souza Filho, and I. O. Mazali, "$TiO_2$ and $CeO_2$ Based Biphasic Core Shell Nanoparticles with Tunable Core Sizes and Shell Thicknesses", J. Phys. Chem. C, Vol. 115, No. 21, pp. 10380-10387, (2011). https://doi.org/10.1021/jp200540g
  10. T. Kropp, J. Paier, and J. Sauer, "Support Effect in Oxide Catalysis: Methanol Oxidation on Vanadia/Ceria", J. Am. Chem. Soc., Vol. 136. No. 41, pp. 14616-14625, (2014). https://doi.org/10.1021/ja508657c
  11. N. Yan, Z. Zhu, J. Zhang, Z. Zhao, and Q. Liu, "Preparation and properties of ce-doped $TiO_2$ photocatalyst", Materials Research Bulletin, Vol. 47, pp. 1869-1873, (2012). https://doi.org/10.1016/j.materresbull.2012.04.077
  12. M. H. Liao, C. H. Hsu, and D. H. Chen, "Preparation and properties of amorphous titania-coated zinc oxide nanoparticles", Journal of Solid State Chemistry, Vol. 179, pp. 2020-2026, (2006). https://doi.org/10.1016/j.jssc.2006.03.042
  13. X. Qu, D. Xie, L. Gao, and F. Du, "Synthesis and photocatalytic activity of $TiO_2$/$CeO_2$ core-shell nanotubes", Materials Science in Semiconductor Processing, Vol. 26, pp. 657-662, (2014). https://doi.org/10.1016/j.mssp.2014.04.009
  14. C. Hao, J. Li, Z. Zhang, Y. Ji, H. Zhan, F. Xiao, D. Wang, B. Liu, and F. Su, "Enhancement of photocatalytic properties of $TiO_2$ nanoparticles doped with $CeO_2$ and supported on $SiO_2$ for phenol degradation", Applied Surface Science, Vol. 331, pp. 17-26, (2015). https://doi.org/10.1016/j.apsusc.2015.01.069
  15. D Tomova, V. Iliev, A. Eliyas, and S. Rakovsky, "Promoting the oxidative removal rate of oxalic acid on gold-doped $CeO_2$/$TiO_2$ photocatalysts under UV and visible light irradiation", Separation and Purification Technology, Vol. 156, pp. 715-723, (2015). https://doi.org/10.1016/j.seppur.2015.10.070
  16. Y. Lin, and Z. Xiaoming, "Preparation of highly dispersed $CeO_2$/$TiO_2$ core-shell nanoparticles", Material Letters, Vol. 62, pp. 3764-3766, (2008). https://doi.org/10.1016/j.matlet.2008.04.059