DOI QR코드

DOI QR Code

The Development of a Sampling Instrument for Aquatic Organisms in Rice Paddy Fields: Submerged Funnel Traps with Attractants

논 생태계 서식 수서생물 채집 도구 개발: 유인제를 사용한 수중트랩

  • 윤성수 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 김명현 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 최순군 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 어진우 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 권순익 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 송영주 (농촌진흥청 국립농업과학원 기후변화생태과)
  • Received : 2017.11.08
  • Accepted : 2017.12.11
  • Published : 2017.12.31

Abstract

The need for an efficient sampling technique to collect aquatic organisms has risen with the increase of interest in rice paddy fields, which have been recognized as important ecosystems supporting biodiversity. In the present study, a submerged funnel trap used with the assistance of attracting agents (fish meal and chemical light) was designed as an easy, objective and quantitative tool for collecting aquatic organisms in the rice paddy fields. The preference for collecting aquatic organisms as a means for attracting agents was analyzed using a generalized linear mixed model. Also, based on the data of previous research, we compared the community composition of the aquatic macroinvertebrates, which were collected using the quadrat method, and newly designed submerged funnel traps, by analyzing non-metric multidimensional scaling. The results showed that the catching efficiency of 18 of the total 65 taxa was affected by the attracting agents. 12 taxa including Pomacea canaliculata, Hippeutis cantori, Austropeplea ollula, Erpobdella lineata, Ostracoda spp. Branchinella kugenumaensis, Hydaticus grammicus, Rhantus pulverosus, Chironomidae spp., Rana nigromaculata, Cobitidae spp. etc., favored fish meal and 6 taxa including Ischnura asiatica, Coenagrionidae spp. Sternolophus rufipes etc., were attracted by chemical light. The submerged funnel trap used as a measurement tool for biodiversity was less applicable than the quadrat method; however, it was more effective for the selective collection of specific taxa. We expect that this newly designed trap can be a simple and quantitative method for collecting aquatic organisms, and could be used for long term and extensive surveys in rice paddy fields in the future.

생물다양성 측면에서 논 생태계의 중요성이 대두되면서 수서생물을 효율적으로 채집하는 방법이 요구되고 있다. 본 연구는 논 생태계 내에서 수서생물을 객관적이고 정량적으로 쉽게 채집하기 위해 두 가지 유인제(어분, 캐미라이트)를 활용한 수중트랩을 고안하였다. 고안된 트랩으로 채집된 수서생물의 유인제 선호도는 일반화선형혼합모형을 통해 분석되었다. 또한 선행연구의 데이터를 활용하여 방형구와 수중트랩으로 채집된 수서 무척추동물의 군집 조성을 비계량형다차원척도법을 통해 비교 분석하였다. 그 결과, 수중트랩에 의해 채집된 65분류군의 수서생물 중 18분류군이 유인제에 의해 채집효율이 달라지는 것을 확인하였다. 18분류군 중왕우렁이, 수정또아리물달팽이, 애기물달팽이, 돌거머리, 패충류, 풍년새우, 꼬마줄물방개, 애기물방개, 깔따구류, 참개구리, 미꾸리류 등 12분류군은 어분을 선호하였고, 아시아실잠자리, 실잠자리류, 깃동잠자리, 방물벌레, 검정배물벌레, 애물땡땡이 등 6종은 캐미라이트를 선호하였다. 또한 수중트랩은 방형구법에 비해 생물다양성의 측정도구로서의 활용도는 낮지만 특정 분류군의 선택적인 채집에는 효과적이었다. 본 연구에서 간단하고 정량적인 방법으로 수서생물을 채집할 수 있도록 고안된 트랩은 장기적이고 광범위한 논 수서생물 생태 조사에 유용하게 활용될 수 있을 것으로 판단된다.

Keywords

References

  1. Anderson MJ, TO Crist, JM Chase, M Vellend, BD Inouye, AL Freestone, NJ Sanders, HV Cornell, LS Comita, KF Davies and SP Harrison. 2011 Navigating the multiple meanings of ${\beta}$ diversity: a roadmap for the practicing ecologist. Ecol. Lett. 14:19-28. https://doi.org/10.1111/j.1461-0248.2010.01552.x
  2. Bates D, M Maechler, B Bolker, S Walker, RH Christensen, H Singmann, B Dai, G Grothendieck, P Green and MB Bolker. 2017. Package 'lme4'. R foundation for statistical computing. Vienna.
  3. Boda P, G Horvath, G Kriska, M Blaho and Z Csabai. 2014. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization. Naturwissenschaften. 101:385-395. https://doi.org/10.1007/s00114-014-1166-2
  4. Bolker BM, ME Brooks, CJ Clark, SW Geange, JR Poulsen, MHH Stevens and JSS White 2009. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 24:127-135. https://doi.org/10.1016/j.tree.2008.10.008
  5. Cheal F, JA Davis, JE Growns, JS Bradley and FH Whittles. 1993. The influence of sampling method on the classification of wetland macroinvertebrate communities. Hydrobiologia 257:47-56. https://doi.org/10.1007/BF00013996
  6. Choe LJ, KJ Cho, MS Han, MK Kim, SK Choi, HS Bang, J Eo, YE Na and MH Kim. 2016. Benthic macroinvertebrate biodiversity improved with irrigation ponds linked to a rice paddy field. Entomol. Res. 46:70-79. https://doi.org/10.1111/1748-5967.12150
  7. Choe LJ, MS Han, M Kim, KJ Cho, KK Kang, YE Na and MH Kim. 2013. Characteristics communities structure of benthic macroinvertebrates in irrigation ponds, within paddy field. Korean J. Environ. Agric. 32:304-314. https://doi.org/10.5338/KJEA.2013.32.4.304
  8. Courtney GW, T Pape, TH Skevington and BJ Sinclair. 2009. Biodiversity of Diptera. Insect biodiversity: science and society. Blackwell. pp. 185-222.
  9. Croll RP. 1983 Gastropod chemoreception. Biol. Rev. 58:293-319.
  10. De La Rosa C and A Ramirez. 1995. A note on phototactic behavior and on phoretic associations in larvae of Mecistogaster ornata Rambur from northern Costa Rica (Zygoptera: Pseudostigmatidae). Odonatologica 24:219-224.
  11. Dyte CE. 1959. Some interesting habitats of larval Dolichopodidae (Diptera). Entomol. Mon. Mag. 95:139-43.
  12. Elmberg J, P Nummi, H Poysa and K Sjoberg. 1993. Do intruding predators and trap position affect the reliability of catches in activity traps? Hydrobiologia 239:187-193.
  13. Elphick CS. 2000. Functional equivalency between rice fields and seminatural wetland habitats. Conserv. Biol. 14:181-191. https://doi.org/10.1046/j.1523-1739.2000.98314.x
  14. Fernando CH. 1961. Aquatic insects taken at light in Ceylon, with a discussion and bibliography of references to aquatic insects at light. Ceylon J. Sci. (Bio. Sci.) 4:45-54.
  15. Fujioka M, SD Lee, M Kurechi and H Yoshida. 2010. Bird use of rice fields in Korea and Japan. Waterbirds 33:8-29. https://doi.org/10.1675/063.033.s102
  16. Hallberg E, KUI Johansson and R Wallen. 1997. Olfactory sensilla in crustaceans: morphology, sexual dimorphism, and distribution patterns. Int. J. Insect Morphol. Embryol. 26:173-180. https://doi.org/10.1016/S0020-7322(97)00019-6
  17. Han MS, HK Nam, KK Kang, M Kim, YE Na, HR Kim and MH Kim. 2013. Characteristics of benthic invertebrates in organic and conventional paddy field. Korean J. Environ. Agric. 32:17-23. https://doi.org/10.5338/KJEA.2013.32.1.17
  18. Han MS, JD Shin, YE Na, NJ Lee, MH Park and SG Kim. 2002. Changes of invertebrate density in rice paddies of different fertilizer managements in demonstration villages of sustainable agriculture. Korean J. Environ. Agric. 21:96-101. https://doi.org/10.5338/KJEA.2002.21.2.096
  19. Han MS, YE Na, HS Bang, MH Kim, MK Kim, KA Roh and JT Lee. 2007. The fauna of aquatic invertebrates in paddy field. Korean J. Environ. Agric. 26:267-273. https://doi.org/10.5338/KJEA.2007.26.3.267
  20. Han MS, YE Na, HS Bang, MH Kim, KK Kang, HK Hong, JT Lee and BG Ko. 2008. Aquatic invertebrates in paddy ecosystem of Korea. National Academy of Agricultural Science. Suwon, Korea. pp. 1-416.
  21. Han MS, YE Na, HS Bang, MH Kim, KK Kang, JT Lee and HK Hong. 2011. Fishes, amphibians and reptiles in paddy ecosystem of Korea. National Academy of Agricultural Science. Suwon, Korea. pp. 1-103.
  22. Hansen A, JO Reiss, CL Gentry and GD Burd. 1998. Ultrastructure of the olfactory organ in the clawed frog, Xenopus laevis, during larval development and metamorphosis. J. Comp. Neurol. 398:273-288. https://doi.org/10.1002/(SICI)1096-9861(19980824)398:2<273::AID-CNE8>3.0.CO;2-Y
  23. Helgen JH, K Thompson, JG Gernes, LC Ferrington and C Wright. 1993. Developing an index of biological integrity for 33 depressional wetlands in Minnesota. Minnesota Pollution Control Agency, Minnesota, USA.
  24. Huni A and WE Kershaw. 1971. Evaluation of a kicking technique for sampling stream bottom fauna. Can. J. Zool. 49:167-173. https://doi.org/10.1139/z71-026
  25. Irie-Kushiyama S, M Asano-Miyoshi, T Suda, K Abe and Y Emori. 2004. Identification of 24 genes and two pseudogenes coding for olfactory receptors in Japanese loach, classified into four subfamilies: a putative evolutionary process for fish olfactory receptor gense by comprehensive phylogenetic analysis. Gene 325:123-135. https://doi.org/10.1016/j.gene.2003.10.011
  26. Jensen JC and RY Zacharuk. 1991. The fine structure of uniporous and nonporous pegs on the distal antennal segment of the diving beetle Graphoderus occidentalis Horn (Coleptera: Dytiscidae). Can. J. Zool. 69:334-352. https://doi.org/10.1139/z91-054
  27. Kadoya T, S Suda and I Washitani. 2009. Dragonfly crisis in Japan: a likely consequence of recent agricultural habitat degradation. Biol. Conserv. 142:1899-1905. https://doi.org/10.1016/j.biocon.2009.02.033
  28. Kang HK and K Chung. 2010. A comparison of samplers for aquatic macroinvertebrate in rice paddies : aquatic net, quadrat and core. Korean J. Appl. Entomol. 49:313-324. https://doi.org/10.5656/KSAE.2010.49.4.313
  29. Kim JG, YC Choi, JY Choi, HS Sim, HC Park, WT Kim, BD Park, JE Lee, KK Kang and DB Lee. 2007. Ecological analysis and environmental evaluation of aquatic insects in agricultural ecosystem. Korean J. Appl. Entomol. 46:335-341. https://doi.org/10.5656/KSAE.2007.46.3.335
  30. Kim JO, SH Lee and KS Jang. 2011. Efforts to Improve Biodiversity in Paddy Field Ecosystem of South Korea. Reintroduction 1:25-30.
  31. Klecka J and DS Boukal. 2011. Lazy ecologist's guide to water beetle diversity: Which sampling methods are the best? Ecol. Indic. 11:500-508. https://doi.org/10.1016/j.ecolind.2010.07.005
  32. Lai YT, JH Chen and LL Lee. 2011. The chemosensory ability of the predatory leech Whitmania laevis (Arhynchobdellida: Haemopidae) for prey searching. Chemoecology 21:67-72. https://doi.org/10.1007/s00049-010-0067-x
  33. LaRow EJ. 1971. Response of Chaoborus (Diptera: Chaoboridae) larvae to different wavelengths of light. Ann. Entomol. Soc. Am. 64:461-464. https://doi.org/10.1093/aesa/64.2.461
  34. Lavergne S, N Mouquet, W Thuiller and O Ronce. 2010. Biodiversity and climate change: integrating evolutionary and ecological responses of species and communities. Ann. Rev. Ecol. Evol. Syst. 41:321-350. https://doi.org/10.1146/annurev-ecolsys-102209-144628
  35. Mackey AP, DA Cooling and AD Berrie. 1984. An evaluation of sampling strategies for qualitative surveys of macro-invertebrates in rivers, using pond nets. J. Appl. Ecol. 1:515-534.
  36. Mann KH. 2013. Leeches (Hirudinea): their structure, physiology, ecology and embryology. Elsevier. pp. 79-80.
  37. Niimura Y and M Nei. 2005. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. PNAS 102:6039-6044. https://doi.org/10.1073/pnas.0501922102
  38. O'Connor A, S Bradish, T Reed, J Moran, E Regan, M Visser, M Gormally and MS Skeffington. 2004. A comparison of the efficacy of pond-net and box sampling methods in turloughs-Irish ephemeral aquatic systems. Hydrobiologia 524:133-144. https://doi.org/10.1023/B:HYDR.0000036128.83998.44
  39. Oksanen J. 2011. Multivariate analysis of ecological communities in R: vegan tutorial. R package version 7:11-12.
  40. Oksanen J, R Kindt, P Legendre, B O'Hara, MH Stevens and MJ Oksanen. 2017. The vegan package ver. 2.4-4. Community ecology package.
  41. Prather CM, SL Pelini, A Laws, E Rivest, M Moltz, CP Bloch, ID Toro, CK Ho, J Kominoski, TA Scott Newbold, S Parsons and A Joern. 2013. Invertebrates, ecosystem services and climate change. Biol. Rev. 88:327-348.
  42. Radwell AJ and NB Camp. 2009. Comparing chemiluminescent and LED light for trapping water mites and aquatic insects. Southeast. Nat. 8:733-738. https://doi.org/10.1656/058.008.0414
  43. Roh G, A Borzee and Y Jang. 2014. Spatiotemporal distributions and habitat characteristics of the endangered treefrog, Hyla suweonensis, in relation to sympatric H. Japonica. Ecol. Inform. 24:78-84. https://doi.org/10.1016/j.ecoinf.2014.07.009
  44. Sawin EP, LR Harris, AR Campos and MB Sokolowski. 1994. Sensorimotor transformation from light reception to phototactic behavior in Drosophila larvae (Diptera: Drosophilidae). J. Insect Behav. 7:553. https://doi.org/10.1007/BF02025449
  45. Semenchenko V, T Laenko and V Razlutskij. 2008. A new record of the North American gastropod Physella acuta (Draparnaud 1805) from the Neman River Basin, Belarus. Aquat. Invasions 3:359-360. https://doi.org/10.3391/ai.2008.3.3.14
  46. Son JK, NC Kim, MH Kim and B Kang. 2012. Community characteristics of benthic macroinvertebrates according to growth environment at rural palustrine wetland. J. Korea Soc. Environ. Restor. Technol. 15:129-144. https://doi.org/10.13087/kosert.2012.15.5.129
  47. Stabell OB, F Ogbebo and R Primicerio. 2003. Inducible defences in Daphnia depend on latent alarm signals from conspecific prey activated in predators. Chem. Senses 28:141-153. https://doi.org/10.1093/chemse/28.2.141
  48. Statistics Korea. 2016. Agricultural Area Survey. http://www.index.go.kr/potal/main/EachDtlPageDetail.do?idx_cd=1287.
  49. Swift MC and RB Forward. 1980. Photoresponses of Chaoborus larvae. J. Insect Physiol. 26:365-371. https://doi.org/10.1016/0022-1910(80)90006-2
  50. Turner AM and JC Trexler. 1997. Sampling aquatic invertebrates from marshes: evaluating the options. J. N. Am. Benthol. Soc. 16:694-709. https://doi.org/10.2307/1468154
  51. Verdonschot RC. 2010. Optimizing the use of activity traps for aquatic biodiversity studies. J. N. Am. Benthol. Soc. 29:1228-1240. https://doi.org/10.1899/09-163.1
  52. Watanabe K and T Hidaka. 1983. Feeding behaviour of the Japanese loach, Misgurnus anguillicaudatus (Cobitididae). J. Ethol. 1:86-90. https://doi.org/10.1007/BF02347834
  53. Yoon IB. 1995. Aquatic insects of Korea. Junghaengsa, Seoul, Korea.