DOI QR코드

DOI QR Code

The Effect of Skewness of Nonlinear Waves on the Transmission Rate through a Porous Wave Breaker

파형의 왜도가 투과성 방파제 투과율에 미치는 영향

  • Received : 2017.10.19
  • Accepted : 2017.12.24
  • Published : 2017.12.31

Abstract

It has been presumed that highly nonlinear skewed waves frequently observed in a surf zone could significantly influence the transmission behaviour via a porous wave breaker due to its larger inertia force than its nonlinear counterparts of zero skewness [Cnoidal waves]. In this study, in order to confirm this perception, a numerical simulation has been implemented for 6 waves the skewness of that range from 1.02 to 1.032. A numerical simulation are based on the Tool Box called as the ihFoam that has its roots on the OpenFoam. Skewed waves are guided by the shoal of 1:30 slope, and the flow in the porous media are analyzed by adding the additional damping term into the RANS (Reynolds Averaged Navier-Stokes equation). Numerical results show that the highly nonlinear skewed waves are of higher transmitted ratio than its counterparts due to its stronger inertia force. In this study, in order to see whether or not the damping at the porous structure has an effect on the wave celerity, we also derived the dispersive relationships of Nonlinear Shallow Water Eq. [NSW] with damping at the porous structure being accounted. The newly derived dispersive relationships shows that the phase lag between the damping friction and the free surface elevation due to waves significantly influence the wave celerity.

쇄파역에서 흔히 관측되는 왜도된 비선형 파랑은 정현파에 비해 상대적으로 큰 관성력을 지녀 투과율에 미치는 영향이 상당할 것으로 추정되어왔다. 본고에서는 이러한 추론을 확인하기 위해 왜도가 1.02에서 1.032에 분포하는 총 여섯 개의 파랑을 대상으로 한 수치모의를 수행하였다. 수치모의는 OpenFoam 기반 Tool box인 ihFoam을 사용하여 수행하였으며, 왜도된 비선형 파랑은 경사가 1:30인 천퇴를 이용하여 유도하였다. 투수층에서의 유동은 Navier Stokes Eq.에 추가 항력을 도입하여 해석하였으며, 모의결과 왜도된 비선형 파랑은 정현파에 비해 큰 관성력으로 인해 상대적으로 큰 투과율을 지니는 것으로 모의되었다. 또한 Porous층에서의 Damping으로 인한 파속변화 여부를 살펴 보기위해 Damping이 반영된 천수방정식으로부터 분산관계식을 새로이 유도하였으며, 그 결과 투과성 방파제에서의 파형과 마찰력 사이의 위상차가 파속에 영향을 미치는 것으로 보인다.

Keywords

References

  1. Sekwang engineering consultants Co., LTD, 2016. Development of new construction method for coastal erosion with wave direction control system, The Ministry of Oceans and Fisheries, Korea.
  2. Akbari, H. and Namin, M.M. (2013). Moving particle method for modeling wave interaction with porous structures. Coast. Eng., 74, 59-73. https://doi.org/10.1016/j.coastaleng.2012.12.002
  3. Dalrymple, R.A. and Rogers, B.D. (2006). Numerical modeling of water waves with the SPH method. Coast. Eng., 53, 141-147. https://doi.org/10.1016/j.coastaleng.2005.10.004
  4. Darcy, H. (1856). Les fontaines publiques de la ville de Dijon.
  5. del Jesus, M., Lara, J.L. and Losada, I.J. (2012). Three-dimensional interaction of waves and porous structures. Part I: Numerical model formulation. Coast. Eng., 64, 57-72. https://doi.org/10.1016/j.coastaleng.2012.01.008
  6. Forcheimer, P. (1901). Wasserbewegung durch Boden. Z. Ver. Dtsch. Ing., 45, 1782-1788.
  7. Guanche, R., Losada, I.J. and Lara, J.L. (2009). Numerical analysis of wave loads for coastal structure stability. Coast. Eng., 56, 543-558. https://doi.org/10.1016/j.coastaleng.2008.11.003
  8. Higuera, P., Lara, J.L. and Losada, I.J. (2013a). Realistic wave generation and active wave absorption for Navier-Stokes models: application to OpenFOAM. Coast. Eng., 71, 102-118. https://doi.org/10.1016/j.coastaleng.2012.07.002
  9. Higuera, P., Lara, J.L. and Losada, I.J. (2013b). Simulating coastal engineering processes with OpenFOAM. Coast. Eng., 71, 119-134. https://doi.org/10.1016/j.coastaleng.2012.06.002
  10. Hoefel, F. and Elgar, S. (2003). Wave-induced sediment transport and sandbar migration. Science, 299, 1885-1886. https://doi.org/10.1126/science.1081448
  11. Hsu, S.T. and Liu, T.P. (2002). A numerical model for wave motions and turbulence flows in front of a composite breakwater. Coast. Eng., 46(1), 25-50. https://doi.org/10.1016/S0378-3839(02)00045-5
  12. Jacobsen, N.G., Fuhrman, D.R. and Fredsoe, J. (2012). A wave generation toolbox for the opensource CFD library: Open-FOAM. Int. J. Numer. Methods Fluids, 70, 1073-1088. https://doi.org/10.1002/fld.2726
  13. Lara, J.L., Garcia, N. and Losada, I.J. (2006). RANS modelling applied to random wave interaction with submerged permeable structures. Coastal Engineering, 53, 395-417. https://doi.org/10.1016/j.coastaleng.2005.11.003
  14. Lara, J.L., Losada, I.J. and Guanche, R. (2008). Wave interaction with low mound breakwaters using a RANS model. Ocean Eng., 35, 1388-1400. https://doi.org/10.1016/j.oceaneng.2008.05.006
  15. Lara, J.L., Ruju, A. and Losada, I.J. (2011). Reynolds Averaged Navier-Stokes modelling of long waves induced by a transient wave group on a beach. Proceedings of the Royal Society A, 467, 1215-1242. https://doi.org/10.1098/rspa.2010.0331
  16. Lara, J.L., Del Jesus, M. and Losada, I.J. (2012). Three-dimensional interaction of waves and porous structures. Part II: Model validation. Coast. Eng., 64, 26-46. https://doi.org/10.1016/j.coastaleng.2012.01.009
  17. Lin, P. and Liu, P.F. (1999). Internal wave-maker for Navier-Stokes equations models. J. Waterw. Port Coast. Ocean Eng., 125, 207-215. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(207)
  18. Losada, I.J., Gonzalez-Ondina, J.M., Diaz, G. and Gonzalez, E.M. (2008). Numerical simulation of transient nonlinear response of semi-enclosed water bodies: model description and experimental validation. Coastal Engineering, 55(1), 21-34. https://doi.org/10.1016/j.coastaleng.2007.06.002
  19. Luppes, R., Veldman, A.E.P. and Wellens, P.R. (2010). Absorbing boundary conditions for wave simulations around offshore structures. V European Conference on Computational Fluid Dynamics (ECCOMAS CFD 2010), Lisbon.
  20. Mei, C.C. (1989). The applied dynamics of ocean surface waves, World Scientific.
  21. Pengzhi, L. and Liu, P.L.-F. (1999). Internal wave-maker for Navier-Stokes equations models. Journal of Waterway, Port, Coastal, and Ocean Engineering, 125, 207-215. https://doi.org/10.1061/(ASCE)0733-950X(1999)125:4(207)
  22. Polubarinova-Kochina, P. (1962). Theory of Ground Water Movement. Princeton University Press.
  23. Schffer, H.A. and Klopman, G. (2000). Review of multidirectional active wave absorption methods. Journal of Waterway, Port, Coastal, and Ocean Engineering, 88-97 (March/April).
  24. Shao, S. (2006). Incompressible SPH simulation of wave breaking and overtopping with turbulence modelling. Int. J. Numer. Methods Fluids, 50, 597-621. https://doi.org/10.1002/fld.1068
  25. Shao, S. (2010). Incompressible SPH flow model for wave interactions with porous media. Coast. Eng., 57(3), 304-316. https://doi.org/10.1016/j.coastaleng.2009.10.012
  26. Torres, F.A., Lara, J.L. and Losada, I.J. (2010). Numerical modelling of short and long wave transformation on a barred beach. Coastal Engineering, 57, 317-330. https://doi.org/10.1016/j.coastaleng.2009.10.013
  27. Troch, P. and De Rouck, J. (1999). An active wave generatingabsorbing boundary condition for VOF type numerical model. Coast. Eng., 38, 223-247. https://doi.org/10.1016/S0378-3839(99)00051-4
  28. Wei, G. and Kirby, J.T. (1995). Time-dependent numerical code for extended Boussinesq equations. Journal of Waterway, Port, Coastal and Ocean Engineering, 121(5), 251-261. https://doi.org/10.1061/(ASCE)0733-950X(1995)121:5(251)
  29. Wellens, P. (2012). Wave simulation in truncated domains for offshore applications. Ph. D. thesis, Delft University of Technology.