DOI QR코드

DOI QR Code

A Research Trend on Lunar Resources and Lunar Base

달 자원 탐사와 달 기지 연구 동향

  • Kim, Kyeong Ja (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 김경자 (한국지질자원연구원 국토지질연구본부)
  • Received : 2017.10.23
  • Accepted : 2017.10.30
  • Published : 2017.12.31

Abstract

A new era with the $4^{th}$ Industrial Revolution certainly brings new opportunities for human to explore human's activities outside of the Earth. After the Apollo program, exploration for lunar resources and establishment of lunar base seem to be in reality. This could be due to new findings by the LCROSS and LRO proving the advanced scientific development and new scientific results about the moon from Asian countries including China with Chang'E missions. It is expected that fossil fuels will be in shortage in the near future and at this time, Helium-3 could be an energy resource as a replacement of the fossil fuels. At present it is well known that countries like Russia, USA, and Europe will continue to investigate on lunar exploration especially with landers toward future human activities on the moon to establish a lunar base. With this point of view, it is important for human to understand lunar resources and prepare for prospective utilization of lunar resources. This review paper considers on a point of view in both lunar resource exploration and establishment of lunar base.

4차 산업 혁명의 시작은 우주산업의 발달을 초래하며 인류가 지구 밖으로 인류의 활동영역을 넓혀가는 첫 계기를 가져다주었다. 아폴로 프로그램이후 달 자원 탐사 및 달 기지 건설이 현실화 되고 있는 것은 미국의 LCROSS (The Lunar Crater Observation and Sensing Satellite)와 LRO (Lunar Reconnaissance Orbiter)의 보다 진보적인 과학적 발전과 중국 창어 미션 등 최근 아시아 국가들이 내놓은 과학적인 새로운 발견이 크게 관여하였다. 달의 극지 자원은 물과 함께 휘발성 물질들이며 현지에서 활용이 요구되므로 인류의 달 기지 건설에 있어서 더욱 중요하다. 헬륨-3는 화석연료가 고갈 될 쯤에는 대체에너지로 활용될 수 있다. 현재 러시아, 유럽과 미국 뿐 만아니라 아시아에서도 달 표면 착륙을 통한 달 탐사와 인류의 향후 기지 건설에 대한 준비는 지속적으로 이어 질 것으로 전망되고 있다. 이러한 시점에서 정확한 달 자원을 이해하고 달 자원 탐사와 활용을 위한 준비는 보다 중요한 현실이라는 점을 고려하여 이 논문은 달 자원 탐사와 달기지에 대하여 고찰하였다.

Keywords

References

  1. Colaprete, A., Schultz, P., Heldmann, J., Wooden, D., Shirley, M., Ennico, K., Hermal. B., 2010, Detection of Water in the LCROSS Ejecta Plume, Science 330, 463-468. https://doi.org/10.1126/science.1186986
  2. Gladston, G. R, Hurley, D., Retherford, K. D. Feldman, P. D., Pryor, Chaufray, J-Y., Versteeg, M., W. R., Greathouse, T. K., Steffl, A. J., Throop, H., Parker, J. W., Kaufmann. D. E., Egan, A. F., Davis, M. W., Slater, D. C., Mukherjee, J. M., Miles, P. F., Hendrix, A. R., Colaprete, A., Stern, A. 2010, LRO-LAMP Observations of the LCROSS Impact Plume, Science, 330, 472-476. https://doi.org/10.1126/science.1186474
  3. Fa, W., Jin, Y-Q. 2007, Quantitative estimation of helium-3 spatial distribution in the lunar regolith layer. Icarus 190, 15-23. https://doi.org/10.1016/j.icarus.2007.03.014
  4. Feldman, W. C., Barraclough, B. L., Fuller, K. R., Lawrence, D. J., Mauricea, S., Miller, M. C., Prettyman T. H., Binder., A. B., 1999, The Lunar Prospector gamma-ray and neutron spectrometers. Nuclear Instrument and Methods A, 422, 562. https://doi.org/10.1016/S0168-9002(98)00934-6
  5. Hasebe, N., Shibamura, E., Miyachi, T., Takashima, T., Kobayashi, M-N., Okudaira, O., Yamashita, N., Kobayashi, S., Karouji, Y., Hareyama, M., Kodaira, S., Komatsu, S., Hayatsu, K., Iwabuchi, K., Nemoto, S., Sakura, K., Miyajima, M., Ebihara, M., Hihara, T., Arai, T., Sugihara, T., Takeda, H., d'Uston, C., Gasnault, O., Diez, B., Forni, O., Maurice, S., Reedy, R. C., and Kim, K. J., 2009, First Results of High Performance Ge Gamma-Ray Spectrometer Onboard Lunar Orbiter SELENE (KAGUYA), Journal of Physical Society of Japan, 78, 18-25. https://doi.org/10.1143/JPSJS.78SA.18
  6. Hong, I. S., Y. Yi, andE. J. Kim, 2014. Lunar pit, crates presumed to be the Entrances of lava caves by analogy to the earth lava tube pits, Journal of Astronomy and Space Sciences, 31(2), 131-140. https://doi.org/10.5140/JASS.2014.31.2.131
  7. Haruyama, J., K. Hioki, M. Shirao, T. Morota, H. Hiesinger, Carolyn H. vander Bogert, H. Miyamoto, A. Iwasaki, Y. Yokota, M. Ohtake, T. Matsunaga, S. Hara, S. Nakanotani, and C. M. Pieters, 2009. Possible lunar lava tube skylight observed by SELENE cameras, Geophysical Research Letters, 36, L21206. https://doi.org/10.1029/2009GL040635
  8. Kim, K. J., Wohler, C., Hasebe, N., van Gasselt, S., Berezhnoy, A. A., Rodriguez, J. A. P., Grumpe, A. 2016, Lunar Silicon Distribution as Observed by the Kaguya Gamma-Ray Spectrometer and Chandrayaan-1 Moon Mineralogy Mapper ($M^3$) Calibration, Lunar Planetary Science Conference 2016, Abstract# 1473.
  9. Kim, K. J., Stephan van Gasselt, S., Ju, G. W., Lee, S-R, Wohler, G., Alexis P. Rodriguez, A. P., Berezhnoy, A., 2016, Korean Lunar Lander-Concept Study for Landing-Site Selection for Lunar Resources Exploration. The International Archives of the Photogrammetry, Remote Sensing (ISPRS-Archives-XLI-B4-417-2016).
  10. Kulcinski, G. L. Schmitt, H. H., Cameron, E. N., Sviatoslavsky, I.N., 1990, Mining Helium-3 from the Moon a Solution to Earth's Engergy Needs in the 21st Century, the 1990 SME (The Society for Mining, Metallurgy, and Exploration) Annual Meeting, 26 Feb-1 Mar, 1990, Salt Lake City UT.
  11. Kulcinski, G. L., Ashley, R. P., Santarius, J. F., Piefer, G., Subramanian, K. M., 2000, The Development of Lunar 3He Resources: Near-Term Applications and Long-Term Prospects, the 4th International Conference on Exploration and Utilisation of the Moon, Noordwijk, The Netherlands, 10-15 July 2000.
  12. Kulcinski, G. L., Schmitt, H. H., 2000, Nuclear Power Without Radioactive Waste- The Promise of Lunar Helium-3, the 2nd Annual Lunar Development Conference, "Return to the Moon II", 20-21 July 2000, Las Vegas, NV.
  13. Livescience, 2017a. https://www.livescience.com/60733-moonlava-tube-could-shelter-astronauts.html (October 21, 2017)
  14. Livescience, 2017b. https://www.livescience.com/60733-moonlava-tube-could-shelter-astronauts.html (October 21, 2017)
  15. Lucey, P., Korotev, R. L., Gillis, J. J., Taylor, L. A., Lawrence, D., Campbell, B. A, Elphic, R., Feldman, B., Hood, L. L., Hunten, D., Mendillo, M., Noble, S., Papike, J. J, Reedy, R. C., Lawson, S., Prettyman, T., Gasnault, O., Maurice, S., 2006. Understanding of the Lunar Surface and Space-Moon Interactions, Reviews in Mineralogy & Geochemistry, 60 83-219. https://doi.org/10.2138/rmg.2006.60.2
  16. NASA, 2017a, https://lunar.gsfc.nasa.gov (October 21, 2017)
  17. NASA, 2017b, https://www.nasa.gov/directorates/spacetech/centennial_challenges/3DPHab/index.html (October 21, 2017)
  18. NASA, 2017c. https://www.nasa.gov/mission_pages/LRO/multimedia/lroimages/lola-20100319-maurius.html (October 21, 2017)
  19. NASA, 2017d. https://ntrs.nasa.gov/search.jsp?R=19980001900 (October 21, 2017)
  20. Metzger, A. E., Trombka, J. I., Peterson, L. E., Reedy, R. C., and Arnold, J. R., 1973, Lunar Surfaces Radioactivity: Preliminary Results of the Apollo 15 and 16 Gamma-Ray Spectrometer Experiments, Science, 179, 800-803. https://doi.org/10.1126/science.179.4075.800
  21. Omar, H. A. Production of Lunar Concrete using Molten Sulfer, NASA report (NASA, 2017d).
  22. Paige, D. A., Siegler, M. A., Zhang, J. A., Hayne, P. O., Foote, E. J, Bennett, K. A., Vasavada, A. R., Greenhagen, B. T., Schofield, J. T., McCleese, D. J., Marc C. Foote, M. C., Eric DeJong, E., Bills, B. G., Hartford, W., Murray, B. C., Allen, C. C., Snook, K., Soderblom, L. A., Simon Calcutt, S., Taylor, F. W., Bowles, N. E., Bandfield, J. L., Elphic, R., Ghent, R., Glotch, T. D., Wyatt, M. B., Lucey, P. G., 2010, Diviner Lunar Radiometer Observations of Cold Traps in the Moon's South Polar Region. Science 330, 479-482. https://doi.org/10.1126/science.1187726
  23. Shrunk, D. G., Sharpe, B. L., Cooper, B. L., Thangavelu M., 2008, The Moon, Resources, Future Developments, and Settlement, 2nd Edition, Praxis Publishing, Chichester, UK, 561 pp.
  24. Slyuta. E. N., Abdrakhimov, A. M. Galimov E. M., Venadsky V. I. 2007, The Estimation of Helium-3 Probable Reserves in Lunar Regolith. LPSC 2007, Abstr. 2175.
  25. Space, 2017, http://www.space.com/images/i/000/025/835/original/lunar-base-foster-partners.jpg?1359754048 (October 21, 2017)
  26. Sun, C. W., Takao, K., Kim, K. J., Choi, Y. J., 2017, Investigation of a possible lunar lava tube in the north of the Rima Galilaei using the surface range of Kaguya Lunar Radar Sounder (LRS) data, Korea Journal of Remote Sensing 33(3), 313-324. https://doi.org/10.7780/kjrs.2017.33.3.6
  27. Yamashita, N., Gasnault, O., Forni, O., d'Uston, C., Reedy, R. C., Karouji, Y., Kobayashi, S., Hareyama, M., Nagaoka, H., Hasebe, N., Kim, K. J., 2012, The global distribution of calcium on the Moon: Implications for high Ca proxyene in the eastern mare region, Earth and Planetary Science Letters, 353-354, 93-98. https://doi.org/10.1016/j.epsl.2012.08.010
  28. Wagner, R. V. and Robinson, M. S., 2014, Distribution, formation mechanisms and significance of lunar pits, Icarus, 237, 52-60. https://doi.org/10.1016/j.icarus.2014.04.002
  29. Wikipedia, 2017a, https://en.wikipedia.org/wiki/Exploration_of_the_Moon (October 21, 2017)
  30. Wikipedia, 2017b, https://en.wikipedia.org/wiki/Luna_24(October 21, 2017)
  31. Wikipedia, 2017c. https://en.wikipedia.org/wiki/Marius_Hills (October 21, 2017)
  32. Wittenberg, L. J. 1988, Terrestrial Sources of Helium-3 Fusion Fuel-A Trip to the Center of the Earth, the 8th Topical meeting on the Technology of Fusion Energy, 9-13 October 1988, Salt Lake City UT.
  33. Zhu, M-H., Chang, J., Xie, M., Fritz, J., Fernandes, V. A., Ip, W-H, Ma, T., Xe, A., 2015, The uniform K distribution of the mare deposits in the oriental basin: Insights from Chang'E-2 gmma-ray spectrometer, Earth and Planetary Science Letters, 418, 172-181. https://doi.org/10.1016/j.epsl.2014.11.009