DOI QR코드

DOI QR Code

Zooplankton Community as an Indicator for Environmental Assessment of Aquatic Ecosystem: Application of Rotifer Functional Groups for Evaluating Water Quality in Eutrophic Reservoirs

동물플랑크톤 군집의 수생태계 환경 평가 지표 활용: 부영양화 저수지 수질 평가를 위한 윤충류 기능성 그룹의 적용

  • Oh, Hye-Ji (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Chang, Kwang-Hyeon (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Seo, Dong-Il (Department of Environmental Science and Engineering, Kyung Hee University) ;
  • Nam, Gui-Sook (Korea Rural Community Corporation) ;
  • Lee, Eui-Haeng (Korea Rural Community Corporation) ;
  • Jeong, Hyun-Gi (National Institute of Environmental Research) ;
  • Yoon, Ju-Duk (National Institute of Ecology) ;
  • Oh, Jong Min (Department of Environmental Science and Engineering, Kyung Hee University)
  • Received : 2017.08.25
  • Accepted : 2017.11.17
  • Published : 2017.12.31

Abstract

In this study, we analyzed response patterns of rotifer community to eutrophic state, and estimated the applicability of rotifer community as an environmental indicator for highly eutrophicated reservoirs. In order to evaluate the relationships among spatial and temporal distributions and the water quality of rotifer community, we selected the Jundae Reservoir and Chodae Reservoir in Chungcheongnam-do, Korea, which are geographically adjacent but have different water quality, particularly in their eutrophic states. For the analyses on their correlations, monthly survey of water quality and rotifer community, was conducted from April to November 2013 in both reservoirs. The rotifer community was divided into different compositions of functional groups as well as species. Functional groups were classified according to the structure and shape of trophi which can represent feeding behavior of rotifer genus. To reflect ecological characteristics of species, body size and habitat preferences were also considered. Species-based composition did not show a consistent tendency with water quality parameters related with eutrophication. On the contrary, functional group composition showed relatively clear group-specific patterns, increasing or decreasing according to the parameters. The results suggest the possible application of rotifer functional group composition as an indicatorforthe lentic systems, especially hyper-eutrophicated reservoirs. The present study can suggest the applicability based on the field observations from the limited time scale and sites, and further studies on feeding behavior of the rotifer functional group and its interactions with environmental variables are necessary for the further application.

본 연구에서는 수생태계 환경 지표로써 윤충류 군집의 활용 가능성을 평가하기 위해 부영양화 진행 정도에 따른 윤충류 군집의 반응 양상을 분석하였다. 윤충류 군집의 시,공간적 분포와 수질과의 관계를 평가하기 위해 지리상 인접하게 위치해 있으나 수질 항목 및 부영양화 정도가 서로 다른 충청남도 소재의 전대저수지와 초대저수지를 연구 대상지로 선정하였다. 분석을 위해 두 저수지에서 2013년 4월부터 11월까지 수질 및 윤충류 군집의 월별 조사를 실시하여 상관관계 분석 및 회귀 분석을 실시하였다. 윤충류 군집은 종 조성과 기능성 그룹 조성으로 나누어 적용하였으며, 기능성 그룹의 경우 섭식 성향을 대변할 수 있는 트로피(trophi)의 구조와 형태 및 개체 크기, 생태를 고려하여 분류하였다. 분석 결과, 종을 기반으로 한 조성의 경우 일관적인 경향이 나타나지 않았으나, 기능성 그룹 조성의 경우 부영양화 정도에 따른 그룹 특이적 증감 경향이 관찰되었다. 이러한 결과는 수생태계, 특히 과영양 상태의 저수지에 대한 환경지표로써 윤충류 기능성 그룹 조성의 활용 가능성을 제시한다. 반면, 본 연구에서는 제한된 연구 지점에서의 현장 결과를 바탕으로 하고 있어, 향후 윤충류 기능성 그룹의 섭식 성향에 따른 환경 적응과 관련한 추가 연구가 이루어진다면 윤충류 군집을 수생태계 내 다양한 변화의 모니터링과 평가 및 비교에 적용 가능할 것으로 여겨진다.

Keywords

References

  1. Chang KH, Doi H, Imai H, Gunji F, Nakano S. 2008a. Longitudinal changes in zooplankton distribution below a reservoir outfall with reference to river planktivory. Limnology. 9: 125-133. https://doi.org/10.1007/s10201-008-0244-6
  2. Chang KH, Nagata T, Sakamoto M, Hanazato T. 2008b. Day and night vertical distributions of Rotiferan and Crustacean zooplankton in Lake Suwa. Journal of Freshwater Ecology. 23(1) : 165-168. https://doi.org/10.1080/02705060.2008.9664568
  3. Clarke KR, Warwick RM. 2001. Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth (UK); Primer-E.
  4. Cruz-Uribe K. 1988. The use and meaning of species diversity and richness in archaeological faunas. Journal of Archaeological Science. 15(2): 179-196. https://doi.org/10.1016/0305-4403(88)90006-4
  5. Doi H, Chang KH, Ando T, Imai H, Nakano S, Kajimoto A, Katano I. 2008. Drifting plankton from a reservoir subsidize downstream food webs and alter community structure. Oecologia. 156: 363-371. https://doi.org/10.1007/s00442-008-0988-z
  6. Dumont HJ. 1983. Biogeography of rotifers. Hydrobiologia. 104: 19-30. https://doi.org/10.1007/BF00045948
  7. Finni T, Laurila S, Laakkonen S. 2001. The history of eutrophication in the sea area of Helsinki in the 20th century: long-term analysis of plankton assemblages. AMBIO: A Journal of the Human Environment. 30(4) : 264-271. https://doi.org/10.1579/0044-7447-30.4.264
  8. Gannon JE, Stemberger RS. 1978. Zooplankton (especially crustaceans and rotifers) as indicators of water quality. Trans. American Society for Microbiology. 97: 16-35. https://doi.org/10.2307/3225681
  9. Gutkowska A, Paturej E, Kowalska E. 2013. Rotifer trophic state indices as ecosystem indicators in brackish coastal waters. Oceanologia. 55: 887-899. https://doi.org/10.5697/oc.55-4.887
  10. Han DH, Choi JY. 2009. A Study on the Water Quality Standards for the Integrated Management of Water Environment. KEI. Basic research report: 1-140. [Korean Literature]
  11. Heino J, Mykra H, Mamalainen H, Arovita J, Muotka T. 2007. Responses of taxonomic distinctness and species diversity indices to anthropogenic impacts and natural environmental gradients in stream macroinvertebrates. Freshwater Biology. 52: 1846-1861. https://doi.org/10.1111/j.1365-2427.2007.01801.x
  12. Heino J, Peckarsky B. 2014. Integrating behavioral, population and large-scale approaches for understanding stream insect communities. Current Opinion in Insect Science. 2: 7-13. https://doi.org/10.1016/j.cois.2014.06.002
  13. Hillbricht-Ilkowska A. 1983. Response of Planktonic Rotifers to the Eutrophication Process and to the Autumnal Shift of Blooms in Lake Biwa, Japan. Japanese Journal of Limnology. 44(2) : 93-106. https://doi.org/10.3739/rikusui.44.93
  14. Hulot FD, Lacroix G, Lescher-Moutoue F, Loreau M. 2000. Functional diversity governs ecosystem response to nutrient enrichment. Nature. 405: 340-344. https://doi.org/10.1038/35012591
  15. Jo KH. 2010. Water Quality Assessment in Small Streams by Epilithic Diatoms and DAIpo. Journal of Environmental Health Science. 36(2): 148-154. [Korean Literature]
  16. Koste W, Shiel RJ. 1987. Rotifera from Australian inland waters. II. Epiphanidae and Brachionidae (Rotifera: Monogononta). Invertebrate Systematics. 1(7): 949-1021. https://doi.org/10.1071/IT9870949
  17. Kim HS, Hwang SJ. 2004. Analysis of eutrophication based on chlorophyll-a, depth and limnological characteristics in Korean reservoirs. Korean Journal of Limnology. 37(2): 213-226. [Korean Literature]
  18. Kim JG, Oh SC. 2007. Characteristics of water quality and evaluation of eutrophication for reservoirs in Kunsan. Journal of the Environmental Sciences. 16(3): 357-367. https://doi.org/10.5322/JES.2007.16.3.357
  19. Kim ES, Sim KB, Kim SD, Choi HI. 2012. Water Quality Assessment for Reservoirs using the Korean Trophic State Index. Journal of Korean Society on Water Environment. 28(1) : 78-83. [Korean Literature]
  20. Kim SJ, Song HJ, Park TJ, Hwang MY, Cho HS, Song KD, Lee HJ, Kim YS. 2015. Survey on Lake Environments in the Yeongsan and Seomjin River Basins: Based on 10 lakes such as Hadong and Sangsa. Journal of Korean Society on Water Environment. 31(6) : 665-679. [Korean Literature] https://doi.org/10.15681/KSWE.2015.31.6.665
  21. Korea Ministry of Environment. 2006. Measurement Data for Water Quality [Intertnet]. Nation law information center; [Cited 2016 Nov 10]. Available from: http://Water.nier.go.kr
  22. Lee SM, Park GS, Yoon SJ, Kang YS, Oh JH. 2008. Development of Ecotoxicological Standard Methods using Early Life Stage of Marine Rotifer Brachionus plicatilis and Benthic Copepod Tigriopus japonicus. Journal of the Korean Society of Oceanography. 13(2) : 129-139. [Korean Literature]
  23. Marba N, Krause-Jensen D, Alcoverro T, Birk S, Pedersen A, Neto JM, Orfanidis S, Garmendia JM, Muxika I, Borja A, Dencheva K, Duarte CM. 2013. Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia. 704: 265-278. https://doi.org/10.1007/s10750-012-1403-7
  24. Minakshi NG, Madhuri KP. 2013. Survey of rotifers to evaluate the water quality of the river Gadhi and its reservoir. Ecology Environment and Conservation. 19: 417-423.
  25. Noh SY, Choi HL, Park JY, Hwang SJ, Kim SH, Lee JA. 2015. Journal of Korean Society on Water Environment. 31(3):319-327. [Korean Literature] https://doi.org/10.15681/KSWE.2015.31.3.319
  26. Oh HJ, Jeong HG, Nam GS, Oda Y, Dai W, Lee EH, Kong DS, Hwang SJ, Chang KH. 2017. Comparison of taxon-based and trophi-based response patterns of rotifer community to water quality: applicability of the rotifer functional group as an indicator of water quality. Animal Cells and Systems. 1-8.
  27. Obertegger U, Smith HA, Flaim G, Wallace RL. 2011. Using the guild ratio to characterize pelagic rotifer communities. Hydrobiologia. 662(1): 157-162. https://doi.org/10.1007/s10750-010-0491-5
  28. Ostojic AM. 2000. Effect of eutrophication on changes in the composition of zooplankton in the Grosnica Reservoir (Serbia, Yugoslavia). Hydrobiologia. 436(1) : 171-178. https://doi.org/10.1023/A:1026539616969
  29. Pan Y, Hughes RM, Herlihy AT, Kaufmann PR. 2012. Non-wadeable river bioassessment: spatial variation of benthic diatom assemblages in Pacific Northwest rivers, USA. Hydrobiologia. 684: 241-260. https://doi.org/10.1007/s10750-011-0990-z
  30. R Development Core Team. 2008. R: A language and environment for statistical computing. Vienna, Austria: R foundation for Statistical Computing[Intertnet]. Nation law information center; [Cited 2016 Nov 10].. Available from: http://www.R-project.org
  31. Saksena D. 1987. Rotifers as indicators of water quality. Acta Hydrochimica et Hydrobiologica. 15: 481-485. https://doi.org/10.1002/aheh.19870150507
  32. Sladecek V. 1983. Rotifers as indicators of water quality. Hydrobiologia. 100: 169-201. https://doi.org/10.1007/BF00027429
  33. Sorensen MV. 2002. On the evolution and morphology of the rotiferan trophi, with a cladistic analysis of Rotifera. Journal of Zoological Systematics and Evoultionary Research. 40: 129-154. https://doi.org/10.1046/j.1439-0469.2002.00188.x
  34. Wallace RL, Snell RW, Ricci C, Nogrady T. 2006. Rotifera: biology, ecology and systematics, Leiden: Backhuys Publishers. 1(2).
  35. Wu L, Zhou M, Shen Z, Cui Y, Feng W. 2017. Spatio-temporal variations in zooplankton community structure and water quality in Chinese eutrophic river. Applied Ecology and Environmental Research. 15(3): 1417-1442. https://doi.org/10.15666/aeer/1503_14171442
  36. Yoshida T, Urabe J, Elser JJ. 2003. Assessment of 'top-down' and 'bottom-up' forces as determinants of rotifer distribution among lakes in Ontario, Canada. Ecological Research. 18: 639-650. https://doi.org/10.1111/j.1440-1703.2003.00596.x
  37. Zhang J, Shi P, Zhou YT, Tang XD, Qian JM, Huang PS. 2013. Structural characteristics of rotifer communities related to water quality in the YONGJIANG RIVER, NINGBO OF ZHEJIANG, CHINA. Vie et milieu. 63(2): 81-92.