Dynamic Subchannel Grouping Algorithm using Local Gateways for Enterprise Small-cell Networks

  • Kim, Se-Jin (Dept. of Computer Science and Statistics, Chosun University)
  • Received : 2017.08.05
  • Accepted : 2017.11.01
  • Published : 2017.12.31


In this paper, we propose a novel dynamic subchannel grouping (DSG) algorithm to maximize the system capacity considering intended proper outage probability for the downlink of enterprise small-cell networks (ESNs). In the proposed DSG scheme, a local gateway (LGW) which is installed in a building dynamically divides the frequency bandwidth into different numbers of subchannel groups (SGs) based on the numbers of small-cell access points (SAPs) and small-cell user equipments (SUEs) per floor. Then, the LGW assigns the SGs to SAPs and the SAPs allocate them to their serving SUEs. Through simulation results, we show that the proposed DSG scheme is appropriate for the ESNs compared to the conventional small-cell networks in which all SAPs use the number of fixed SGs in terms of the system capacity and outage probability.


Supported by : National Research Foundation of Korea (NRF)


  1. Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016-2021, White paper, CISCO, 2017.
  2. A. d. l. Fuente, R. P. Leal, A. G. Armada, "New Technologies and Trends for Next Generation Mobile Broadcasting Services," IEEE Communications Magazine, Vol. 54, No. 11, pp.217-223, 2016.
  3. T. Nakamura, S. Nagata, A. Benjebbour, Y. Kishiyama, T. Hai, S. Xiaodong, Y. Ning, L. Nan, "Trends in small cell enhancements in LTE advanced," IEEE Communications Magazine, Vol. 51, No. 2, pp.98-105, 2013.
  4. W. A. M. Weijermars, "Analysis of urban traffic patterns using clustering," Ph.D. dissertation, Univ. Twente, Enschede, The Netherlands, 2007.
  5. V. Chandrasekhar, J.G. Andrews, and A. Gatherer, "Femtocell Networks: A Survey," IEEE Communication Magazine, Vol. 46, No. 9, pp.59-67, 2008.
  6. F.A. Zdarsky, A. Maeder, S. Al-Sabea, S. Schmid, "Localization of Data and Control Plane Traffic in Enterprise Femtocell Networks," VTC Spring 2011, pp.1-5, 2011.
  7. N. Zhao, X. Liu, F. R. Yu, M. Li, V. C. M. Leung, "Communications, caching, and computing oriented small cell networks with interference alignment," IEEE Communications Magazine, Vol. 54, No. 9, pp.29-35, 2016.
  8. S. Fortes, A. Aguilar-García, R. Barco, F. B. Barba, J. A. Fernandez-luque; A. Fernandez-Duran, "Management architecture for location-aware self-organizing LTE/LTE-a small cell networks," IEEE Communications Magazine, Vol. 53, No. 1, pp.294-302, 2015.
  9. D. Bojic, E. Sasaki, N. Cvijetic, T. Wang, J. Kuno, J. Lessmann, S. Schmid, H. Ishii, S. Nakamura, "Advanced wireless and optical technologies for small-cell mobile backhaul with dynamic softwaredefined management," IEEE Communications Magazine, Vol. 51, No. 9, pp.86-93, 2013.
  10. 3GPP TS 22.220, Service Requirements for Home NodeB (HNB) and Home eNodeB (HeNB), 2009.
  11. Small-Cell Forum,
  12. A. Prasad, O. Tirkkonen, P. Lunden, O. N. C. Yilmaz, L. Dalsgaard, C. Wijting, "Energy-efficient inter-frequency small cell discovery techniques for LTE-advanced heterogeneous network deployments," IEEE Communications Magazine, Vol. 51, No. 5, pp.72-81, 2013.
  13. X. Ge, J. Yang, H. Gharavi, Y. Sun, "Energy Efficiency Challenges of 5G Small Cell Networks," IEEE Communications Magazine, Vol. 55, No. 5, pp.184-191, 2017.
  14. Y. Mao, Y. Luo, J. Zhang, K. B. Letaief, "Energy harvesting small cell networks: feasibility, deployment, and operation," IEEE Communications Magazine, Vol. 53, No. 6, pp.94-101, 2015.
  15. J. M. R. Aviles, S. Luna-Ramirez, M. Toril, F. Ruiz, I. de la Bandera-Cascales, P. Munoz-Luengo, "Analysis of load sharing techniques in enterprise LTE femtocells," WiAd 2011, pp.195-200, 2011.
  16. G. Cao, D. Yang, R. An, X. Ye, R. Zheng, X. Zhang, "An adaptive sub-band allocation scheme for dense femtocell environment," WCNC 2011, pp.102-107, 2011.
  17. 3GPP TSG-RAN WG 4, R4-092042, Simulation assumptions and parameters for FDD HeNB RF requirements, 2009.
  18. Y. Shi, A. B. MacKenzie, L. A. DaSilva, "On Resource Reuse for Cellular Networks with Femto- and Macrocell Coexistence," IEEE GLOBECOM 2010, pp.1-6, 2011.