DOI QR코드

DOI QR Code

Effect of Food Simulants on the Properties of LDPE-Nano TiO2 Composite Film in Food Contact Environment

식품 접촉 모사 환경에서 식품유사용매의 LDPE-나노 TiO2 복합필름 재질특성 영향 평가

  • Lee, Wooseok (Department of Packaging, Yonsei University) ;
  • Choi, Jae Chun (Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation) ;
  • Park, Se-jong (Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation) ;
  • Kim, MeeKyung (Food Additives and Packaging Division, National Institute of Food and Drug Safety Evaluation) ;
  • Ko, Seonghyuk (Department of Packaging, Yonsei University)
  • 이우석 (연세대학교 패키징학과) ;
  • 최재천 (식품의약품안전평가원 첨가물포장과) ;
  • 박세종 (식품의약품안전평가원 첨가물포장과) ;
  • 김미경 (식품의약품안전평가원 첨가물포장과) ;
  • 고성혁 (연세대학교 패키징학과)
  • Received : 2017.07.27
  • Accepted : 2017.11.22
  • Published : 2017.12.31

Abstract

The effect of food simulants on properties and light barrier function of LDPE-nano $TiO_2$ composite film has been investigated. LDPE-nano $TiO_2$ composite films were prepared with 5.0wt% $TiO_2$ content by melt-extrusion. To simulate food contact environment, according to KFDA standards and specifications for food utensils, containers and packages, food simulants were selected with deionized water, 50% ethanol, 4% acetic acid and n-heptane and composite films were immersed in each food simulant at $70^{\circ}C$, 30 min except n-heptane ($25^{\circ}C$, 60 min). A variety of material properties, including crystallinity, chemical bonds, surface morphology, mechanical, oxygen barrier and optical properties, of LDPE-nano $TiO_2$ composite film were examined with and without the food simulants treatment. As a result, under regulated migration condition, LDPE-nano $TiO_2$ composite showed extremely stable in all properties tested in the study in contact with food simulants indicating that $TiO_2$ nanoparticles are physicochemically stable and quite compatible with LDPE. Results enable us to anticipate migration of $TiO_2$ will probably not occur. To evaluate influence of migration of $TiO_2$ on food stuffs, their color, pH and acidity were observed as well.

Keywords

References

  1. Research, P. M., Persistence Market Research: Global Nanoenabled Packaging Market to Reach US$15.0 Billion by 2020 , 2014).
  2. Duncan, T. V. 2011. Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science 363: 1-24. https://doi.org/10.1016/j.jcis.2011.07.017
  3. Paralikar, S. A., Simonsen, J. and Lombardi, J. 2008. Poly (vinyl alcohol)/cellulose nanocrystal barrier membranes. Journal of Membrane Science 320: 248-258. https://doi.org/10.1016/j.memsci.2008.04.009
  4. Chaudhry, Q., Scotter, M., Blackburn, J., Ross, B., Boxall, A., Castle, L., Aitken, R. and Watkins, R. 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants 25: 241-258. https://doi.org/10.1080/02652030701744538
  5. Handford, C. E., Dean, M., Henchion, M., Spence, M., Elliott, C. T. and Campbell, K. 2014. Implications of nanotechnology for the agri-food industry: Opportunities, benefits and risks. Trends in Food Science & Technology 40: 226-241. https://doi.org/10.1016/j.tifs.2014.09.007
  6. Silvestre, C., Duraccio, D. and Cimmino, S. 2011. Food packaging based on polymer nanomaterials. Progress in Polymer Science 36: 1766-1782. https://doi.org/10.1016/j.progpolymsci.2011.02.003
  7. Mohanty, A. K., Misra, M. and Nalwa, H. S. 2009. Packaging nanotechnology. American Scientific Publishers 2009.
  8. Rubilar, O., Diez, M., Tortella, G., Briceno, G., Marcato, P. and Duran, N. 2014. New strategies and challenges for nanobiotechnology in agriculture. Journal of Biobased Materials and Bioenergy 8: 1-12. https://doi.org/10.1166/jbmb.2014.1407
  9. Kim, S. W. and Cha, S. H. 2014. Thermal, mechanical, and gas barrier properties of ethylene-vinyl alcohol copolymerbased nanocomposites for food packaging films: Effects of nanoclay loading. Journal of Applied Polymer Science 131.
  10. Cho, T. W. and Kim, S. W. 2011. Morphologies and properties of nanocomposite films based on a biodegradable poly (ester) urethane elastomer. Journal of Applied Polymer Science 121: 1622-1630. https://doi.org/10.1002/app.33766
  11. Sarsar, V., Selwal, K. K. and Selwal, M. K. 2014. Nanosilver: potent antimicrobial agent and its biosynthesis. African Journal of Biotechnology 13.
  12. Espitia, P. J. P., Soares, N. d. F. F., dos Reis Coimbra, J. S., de Andrade, N. J., Cruz, R. S. and Medeiros, E. A. A. 2012. Zinc oxide nanoparticles: synthesis, antimicrobial activity and food packaging applications. Food and Bioprocess Technology 5: 1447-1464. https://doi.org/10.1007/s11947-012-0797-6
  13. Macwan, D., Dave, P. N. and Chaturvedi, S. 2011. A review on nano-$TiO_2$ sol-gel type syntheses and its applications. Journal of Materials Science 46: 3669-3686. https://doi.org/10.1007/s10853-011-5378-y
  14. Zhang, W., Zhu, Z. and Cheng, C. Y. 2011. A literature review of titanium metallurgical processes. Hydrometallurgy 108: 177-188. https://doi.org/10.1016/j.hydromet.2011.04.005
  15. Peters, R. J., van Bemmel, G., Herrera-Rivera, Z., Helsper, H. P., Marvin, H. J., Weigel, S., Tromp, P. C., Oomen, A. G., Rietveld, A. G. and Bouwmeester, H. 2014. Characterization of titanium dioxide nanoparticles in food products: analytical methods to define nanoparticles. Journal of Agricultural and Food Chemistry 62: 6285-6293. https://doi.org/10.1021/jf5011885
  16. Guo, G., Shi, Q., Luo, Y., Fan, R., Zhou, L., Qian, Z. and Yu, J. 2014. Preparation and ageing-resistant properties of polyester composites modified with functional nanoscale additives. Nanoscale Research Letters 9: 1-9. https://doi.org/10.1186/1556-276X-9-1
  17. Diaz-Visurraga, J., Melendrez, M., Garcia, A., Paulraj, M. and Cardenas, G. 2010. Semitransparent chitosan-$TiO_2$ nanotubes composite film for food package applications. Journal of Applied Polymer Science 116: 3503-3515.
  18. Sabzi, M., Mirabedini, S., Zohuriaan-Mehr, J. and Atai, M. 2009. Surface modification of $TiO_2$ nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Progress in Organic Coatings 65: 222-228. https://doi.org/10.1016/j.porgcoat.2008.11.006
  19. Othman, S. H., Abd Salam, N. R., Zainal, N., Kadir Basha, R. and Talib, R. A. 2014. Antimicrobial activity of $TiO_2$ nanoparticle-coated film for potential food packaging applications. International Journal of Photoenergy 2014.
  20. Colin-Chavez, C., Vicente-Ramirez, E. B., Soto-Valdez, H., Peralta, E. and Auras, R. 2014. The release of carotenoids from a light-protected antioxidant active packaging designed to improve the stability of soybean oil. Food and Bioprocess Technology 7: 3504-3515. https://doi.org/10.1007/s11947-014-1359-x
  21. Chawengkijwanich, C. and Hayata, Y. 2008. Development of $TiO_2$ powder-coated food packaging film and its ability to inactivate Escherichia coli in vitro and in actual tests. International Journal of Food Microbiology 123: 288-292. https://doi.org/10.1016/j.ijfoodmicro.2007.12.017
  22. Whelton, A., Duncan, T., Koontz, J., Nguyen, T. and NIST, G., Nanoparticle release from polymer nanocomposites used for potable water infrastructure and food packaging: Current progress & beyond. Proc. Nanotech. Conf. Expo, 2011.
  23. 김은주. 2010. 나노물질 위해성 평가: 논점과 전망.
  24. Huang, C., Zhu, J., Chen, L., Li, L. and Li, X. 2014. Structural changes and plasticizer migration of starch-based food packaging material contacting with milk during microwave heating. Food Control 36: 55-62. https://doi.org/10.1016/j.foodcont.2013.08.007
  25. 식품의약품안전처. 2016, 식품용 기구 및 용기 포장 공전.
  26. Materials, A. S. f. T. ASTM D882, 2012, Standard Test Method for Tensile Properties of Thin Plastic Sheeting.
  27. Abdollahi, M., Alboofetileh, M., Behrooz, R., Rezaei, M. and Miraki, R. 2013. Reducing water sensitivity of alginate bionanocomposite film using cellulose nanoparticles. International Journal of Biological Macromolecules 54: 166-173. https://doi.org/10.1016/j.ijbiomac.2012.12.016
  28. De Rosa, C., Auriemma, F., Corradini, P., Tarallo, O., Dello Iacono, S., Ciaccia, E. and Resconi, L. 2006. Crystal structure of the trigonal form of isotactic polypropylene as an example of density-driven polymer structure. Journal of the American Chemical Society 128: 80-81. https://doi.org/10.1021/ja0572957
  29. You, T., Jiang, L., Han, K.-L. and Deng, W.-Q. 2013. Improving the performance of quantum dot-sensitized solar cells by using $TiO_2$ nanosheets with exposed highly reactive facets. Nanotechnology 24: 245401. https://doi.org/10.1088/0957-4484/24/24/245401
  30. Asghar, W., Qazi, I. A., Ilyas, H., Khan, A. A., Awan, M. A. and Aslam, M. R. 2011. Comparative solid phase photocatalytic degradation of polythene films with doped and undoped $TiO_2$ nanoparticles. Journal of Nanomaterials 2011: 12.
  31. Amalraj, A. and Pius, A. 2014. Photocatalytic degradation of alizarin red S and bismarck brown R using TiO.
  32. Xie, C., Xu, Z., Yang, Q., Xue, B., Du, Y. and Zhang, J. 2004. Enhanced photocatalytic activity of titania-silica mixed oxide prepared via basic hydrolyzation. Materials Science and Engineering: B 112: 34-41. https://doi.org/10.1016/j.mseb.2004.05.011
  33. Feliciani, R., Migliorelli, D., Maggio, A. and Gramiccioni, L. 1998. Titanium: A promising new material for food contact. A study of titanium resistance to some aggressive food simulants? Food Additives & Contaminants 15: 237-242. https://doi.org/10.1080/02652039809374635
  34. Lee, D. S., Yam, K. L. and Piergiovanni, L. 2008. Food packaging science and technology. CRC press.