DOI QR코드

DOI QR Code

The World's Thinnest Graphene Light Source

세상에서 가장 얇은 그래핀 발광 소자

  • Published : 2017.09.30

Abstract

Graphene has emerged as a promising material for optoelectronic applications including as ultrafast and broadband photodetector, optical modulator, and nonlinear photonic devices. Graphene based devices have shown the feasibility of ultrafast signal processing for required for photonic integrated circuits. However, on-chip monolithic nanoscale light source has remained challenges. Graphene's high current density, thermal stability, low heat capacity and non-equilibrium of electron and lattice temperature properties suggest that graphene as promising thermal light source. Early efforts showed infrared thermal radiation from substrate supported graphene device, with temperature limited due to significant cooling to substrate. The recent demonstration of bright visible light emission from suspended graphene achieve temperature up to ~3000 K and increase efficiency by reducing the heat dissipation and electron scattering. The world's thinnest graphene light source provides a promising path for on-chip light source for optical communication and next-generation display module.

Keywords

References

  1. T.P. Hughes, American Genesis (University of Chicago Press, 2004).
  2. K.S. Novoselov, D. Jiang, T. Booth, V.V. Khotkevich, S.M. Morozov, and A.K. Geim, Proc. Natl. Acad. Sci. U. S. a. 102, 10451. 4 p (2005). https://doi.org/10.1073/pnas.0502848102
  3. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, and A.A. Firsov, Nature 438, 197 (2005). https://doi.org/10.1038/nature04233
  4. Y. Zhang, Y.W. Tan, H.L. Stormer, and P. Kim, Nature 438, 201 (2005). https://doi.org/10.1038/nature04235
  5. C. Lee, X. Wei, J.W. Kysar, and J. Hone, Science 321, 385 (2008). https://doi.org/10.1126/science.1157996
  6. K.S. Novoselov, V.I. Fal ko, L. Colombo, P.R. Gellert, M.G. Schwab, and K. Kim, Nature 490, 192 (2012). https://doi.org/10.1038/nature11458
  7. K. Kim, Y. Zhao, H. Jang, S. Lee, J. Kim, and K. Kim, Nature 457, 706 (2009). https://doi.org/10.1038/nature07719
  8. A.K. Geim and I.V. Grigorieva, Nature 499, 419 (2013). https://doi.org/10.1038/nature12385
  9. F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari, Nat Photon 4, 611 (2010). https://doi.org/10.1038/nphoton.2010.186
  10. Q. Bao and K.P. Loh, ACS Nano 6, 3677 (2012). https://doi.org/10.1021/nn300989g
  11. X. Gan, R.-J. Shiue, Y. Gao, I. Meric, T.F. Heinz, K. Shepard, J. Hone, S. Assefa, and D. Englund, Nat Photon 7, 883 (2013). https://doi.org/10.1038/nphoton.2013.253
  12. C.T. Phare, Y.-H. Daniel Lee, J. Cardenas, and M. Lipson, Nat Photon 9, 511 (2015). https://doi.org/10.1038/nphoton.2015.122
  13. A.F. Young and P. Kim, Nat Phys 5, 222 (2009). https://doi.org/10.1038/nphys1198
  14. R. Murali, Y. Yang, K. Brenner, T. Beck, and J.D. Meindl, Appl. Phys. Lett. 94, 243114 (2009). https://doi.org/10.1063/1.3147183
  15. K.V. Zakharchenko, A. Fasolino, J.H. Los, and M.I. Katsnelson, Journal of Physics: Condensed Matter 23, 202202 (2011). https://doi.org/10.1088/0953-8984/23/20/202202
  16. T. Low, V. Perebeinos, R. Kim, M. Freitag, and P. Avouris, Phys. Rev. B 86, 045413 (2012). https://doi.org/10.1103/PhysRevB.86.045413
  17. M. Freitag, H.-Y. Chiu, M. Steiner, V. Perebeinos, and P. Avouris, Nat Nano 5, 497 (2010). https://doi.org/10.1038/nnano.2010.90
  18. M.-H. Bae, Z.-Y. Ong, D. Estrada, and E. Pop, Nano Lett. 10, 4787 (2010). https://doi.org/10.1021/nl1011596
  19. L. Wang, I. Meric, P.Y. Huang, Q. Gao, Y. Gao, H. Tran, T. Taniguchi, K. Watanabe, L.M. Campos, D.A. Muller, J. Guo, P. Kim, J. Hone, K.L. Shepard, and C.R. Dean, Science 342, 614 (2013). https://doi.org/10.1126/science.1244358
  20. X. Cui, G.-H. Lee, Y.D. Kim, G. Arefe, P.Y. Huang, C.-H. Lee, D.A. Chenet, X. Zhang, L. Wang, F. Ye, F. Pizzocchero, B.S. Jessen, K. Watanabe, T. Taniguchi, D.A. Muller, T. Low, P. Kim, and J. Hone, Nat Nano 10, 534 (2015). https://doi.org/10.1038/nnano.2015.70
  21. K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H.L. Stormer, Solid State Communications 146, 351 (2008). https://doi.org/10.1016/j.ssc.2008.02.024
  22. V.E. Dorgan, A. Behnam, H.J. Conley, K.I. Bolotin, and E. Pop, Nano Lett. 13, 4581 (2013). https://doi.org/10.1021/nl400197w
  23. Y.D. Kim, H. Kim, Y. Cho, J.H. Ryoo, C.-H. Park, P. Kim, Y.S. Kim, S. Lee, Y. Li, S.-N. Park, Y. Shim Yoo, D. Yoon, V.E. Dorgan, E. Pop, T.F. Heinz, J. Hone, S.-H. Chun, H. Cheong, S.W. Lee, M.-H. Bae, and Y.D. Park, Nat Nano 10, 676 (2015). https://doi.org/10.1038/nnano.2015.118
  24. http://www.guinnessworldrecords.com/world-records/399438-thinnest-light-source, Guinness World Record; Thinnest light source.