DOI QR코드

DOI QR Code

Recent Development in Polyurethanes for Automotives

  • Moon, Junho (School of Materials Science and Engineering, Polymer Science and Engineering, RIGET, Gyeongsang National University) ;
  • Kwak, Sung Bok (R&D Planning Team, Duckyang Ind. Co., Ltd) ;
  • Lee, Jae Yong (R&D Planning Team, Duckyang Ind. Co., Ltd) ;
  • Oh, Jeong Seok (School of Materials Science and Engineering, Polymer Science and Engineering, RIGET, Gyeongsang National University)
  • 투고 : 2017.10.25
  • 심사 : 2017.11.27
  • 발행 : 2017.12.31

초록

The history of polyurethane is relatively shorter compared to that of the other polymers, though its importance has grown rapidly. Due to its unique properties, polyurethanes are widely applied in various fields. In particular, the automotive industry is one of the important application fields. To date, polyols and isocyanates used in the polyurethane industry are generally of petrochemical origin. Recently, owing to the oil crisis, legislation, and growing awareness towards environmental preservation, the demand for more sustainable and eco-friendly raw materials has increased. In this paper, the latest research and development trends in polyurethane applications were reviewed, with a focus on the automobile industry in areas such as seat comfort, noise reduction, light weight, biomass-based polyurethane, and recycling.

키워드

참고문헌

  1. O. Bayer, W. Siefken, H. Rinke, L. Orthner, and H. Schild, "A process for the production of polyurethanes and polyureas", German Patent DRP 728981 (1937).
  2. "세계 polyurethane 발전 75년사", The polyurethane world, 226 (2012).
  3. H. W. Engels, H. G. Pirkl, R. Albers, R. W. Albach, J. Krause, A. Hoffmann, H. Casselmann, and J. Dormish, "Polyurethanes: versatile materials and sustainable problem solvers for today's challenges", Angewandte Chemie International Edition, 52, 9422 (2013). https://doi.org/10.1002/anie.201302766
  4. R. C. Saxena, D. K. Adhikari, and H. B. Goyal, "Biomassbased energy fuel through biochemical routes: a review", Renewable and Sustainable Energy Reviews, 13, 167 (2009). https://doi.org/10.1016/j.rser.2007.07.011
  5. 장한기, "[특별기고] 고안락성 시트 개발기술 동향",오토저널, 23, 48 (2001).
  6. D. Y. Kim, J. H. Bang, C. A. Lee, H. Y. Kim, K. Y. Choi, and B. G. Lim, "Numerical evaluation of time-dependent sagging for low density polyurethane foams to apply the long-term driving comfort on the seat cushion design", International Journal of Industrial Ergonomics, (2017), http://dx.doi.org/10.1016/j.ergon.2016.08.010.
  7. J. S. Oh, D. Y. Kim, T. H. Kim, H. Y. Kim, S. H. Lee, and K. Y. Choi, "Numerical prediction of the viscoelastic deformation of seat foam in response to long-term driving", Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 229, 214 (2015).
  8. R. K. Ippili, P. Davies, A. K. Bajaj, and L. Hagenmeyer, "Nonlinear multi-body dynamic modeling of seat-occupant system with polyurethane seat and H-point prediction" International Journal of Industrial Ergonomics, 38, 368 (2008). https://doi.org/10.1016/j.ergon.2007.08.014
  9. 박상남, "자동차 시트 기술 개발동향", 오토저널, 31, 26 (2009).
  10. 정인중, 이원구, 김병훈, "차량 내장재 NVH 분야 기술 동향", 소음.진동, 16, 12 (2006).
  11. T. Bürgin, C. Bertolini, D. Caprioli, and C. Müller, "Engine Encapsulation for $CO_2$ and Noise Reduction", ATZ worldwide, 116, 16 (2014).
  12. S. K. Kim, G. Sung, J. G. Gwon, and J. H. Kim, "Controlled phase separation in flexible polyurethane foams with diethanolamine cross-linker for improved sound absorption efficiency", International Journal of Precision Engineering and Manufacturing-Green Technology, 3, 367 (2016). https://doi.org/10.1007/s40684-016-0046-y
  13. G. Sung, J. W. Kim, and J. H. Kim, "Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption", Journal of Industrial and Engineering Chemistry, 44, 99 (2016). https://doi.org/10.1016/j.jiec.2016.08.014
  14. A. L. Loureiro, L. F. Da Silva, C. Sato, and M. A. V. Figueiredo, "Comparison of the mechanical behaviour between stiff and flexible adhesive joints for the automotive industry", The Journal of Adhesion, 86, 765 (2010). https://doi.org/10.1080/00218464.2010.482440
  15. Y. Boutar, S. Naïmi, S. Mezlini, L. F. da Silva, and M. B. S. Ali, "Characterization of aluminium one-component polyurethane adhesive joints as a function of bond thickness for the automotive industry: Fracture analysis and behavior", Engineering Fracture Mechanics, 177, 45 (2017). https://doi.org/10.1016/j.engfracmech.2017.03.044
  16. V. Jaso, M. Cvetinov, S. Rakic, and Z. S. Petrovic, "Bio-plastics and elastomers from polylactic acid/thermoplastic polyurethane blends", Journal of Applied Polymer Science, 131, 1 (2014).
  17. Y. J. Jo, S. H. Choi, and E. Y. Lee, "Production of Biopolyols, Bioisocyanates and Biopolyurethanes from Renewable Biomass", Applied Chemistry for Engineering, 24, 579 (2013). https://doi.org/10.14478/ace.2013.1081
  18. "Trends in White Biotech", Korea Biosafety Clearing House, 70, 1 (2015).
  19. 민경선, 엄영순, "식물 소재 유래 바이오폴리우레탄 생산", BT news, 18, 21 (2011).
  20. A. Guo, W. Zhang, and Z. S. Petrovic, "Structure-property relationships in polyurethanes derived from soybean oil", Journal of Materials Science, 41, 4914 (2006). https://doi.org/10.1007/s10853-006-0310-6
  21. M. N. Belgacem and A. Gandini, "Monomers, polymers and composites from renewable resources", pp.40-43, Elsevier, Netherlands, 2008.
  22. C. K. Lyon, V. H. Garrett, and L. A. Goldblatt., "Rigid urethane foams from blown castor oils", Journal of the American Oil Chemists' Society, 41, 23 (1964). https://doi.org/10.1007/BF02661896
  23. M. Kurańska, A. Prociak, M. Kirpluks, and U. Cabulis, "Polyurethane-polyisocyanurate foams modified with hydroxyl derivatives of rapeseed oil", Industrial Crops and Products, 74, 849 (2015). https://doi.org/10.1016/j.indcrop.2015.06.006
  24. C. S. Carriço, T. Fraga, and V. M. Pasa, "Production and characterization of polyurethane foams from a simple mixture of castor oil, crude glycerol and untreated lignin as bio-based polyols", European Polymer Journal, 85, 53 (2016). https://doi.org/10.1016/j.eurpolymj.2016.10.012
  25. E. Glowinska and J. Datta, "Bio polyetherurethane composites with high content of natural ingredients: hydroxylated soybean oil based polyol, bio glycol and microcrystalline cellulose", Cellulose, 23, 581 (2016). https://doi.org/10.1007/s10570-015-0825-6
  26. J. Datta and E. Glowinska, "Effect of hydroxylated soybean oil and bio-based propanediol on the structure and thermal properties of synthesized bio-polyurethanes", Industrial Crops and Products, 61, 84 (2014). https://doi.org/10.1016/j.indcrop.2014.06.050
  27. M. Besson, P. Gallezot, and C. Pinel, "Conversion of biomass into chemicals over metal catalysts", Chemical Reviews, 114, 1827 (2013).
  28. M. Xiong, D. K. Schneiderman, F. S. Bates, M. A. Hillmyer, and K. Zhang, "Scalable production of mechanically tunable block polymers from sugar", Proceedings of the National Academy of Sciences, 111, 8357 (2014). https://doi.org/10.1073/pnas.1404596111
  29. N. V. Gama, B. Soares, C. S. Freire, R. Silva, C. P. Neto, A. Barros-Timmons, and A. Ferreira, "Bio-based polyurethane foams toward applications beyond thermal insulation", Materials & Design, 76, 77 (2015). https://doi.org/10.1016/j.matdes.2015.03.032
  30. A. A. Hakim, M. Nassar, A. Emam, and M. Sultan, "Preparation and characterization of rigid polyurethane foam prepared from sugar-cane bagasse polyol", Materials Chemistry and Physics, 129, 301 (2011). https://doi.org/10.1016/j.matchemphys.2011.04.008
  31. Y. Li, Y. Han, T. Qin, and F. Chu, "Preparation of polyurethane foams based on liquefied corn stalk enzymatic hydrolysis lignin", Journal of Biobased Materials and Bioenergy, 6, 51 (2012). https://doi.org/10.1166/jbmb.2012.1197
  32. S. Hu, X. Luo, and Y. Li, "Polyols and polyurethanes from the liquefaction of lignocellulosic biomass", ChemSusChem, 7, 66 (2014). https://doi.org/10.1002/cssc.201300760
  33. B. K. Uprety, J. V. Reddy, S. S. Dalli, and S. K. Rakshit, "Utilization of microbial oil obtained from crude glycerol for the production of polyol and its subsequent conversion to polyurethane foams", Bioresource Technology, 235, 309 (2017). https://doi.org/10.1016/j.biortech.2017.03.126
  34. G. Cayli and S. Kusefoglu, "Biobased polyisocyanates from plant oil triglycerides: Synthesis, polymerization, and characterization", Journal of Applied Polymer Science, 109, 2948 (2008). https://doi.org/10.1002/app.28401
  35. L. Hojabri, X. Kong, and S. Narine, "Fatty acid-derived diisocyanate and biobased polyurethane produced from vegetable oil: synthesis, polymerization, and characterization", Biomacromolecules, 10, 884 (2009). https://doi.org/10.1021/bm801411w
  36. A. S. More, T. Lebarbe, L. Maisonneuve, B. Gadenne, C. Alfos, and H. Cramail, "Novel fatty acid based di-isocyanates towards the synthesis of thermoplastic polyurethanes", European Polymer Journal, 49, 823 (2013). https://doi.org/10.1016/j.eurpolymj.2012.12.013
  37. "Bayer MaterialScience hardener wins award", Reinforced plastic, 59, 171 (2015).
  38. "A new aliphatic isocyanate polymer designed for extreme low viscosity formulations", Focus on powder coatings, 2013, 6 (2013).
  39. A. Cornille, R. Auvergne, O. Figovsky, B. Boutevin, and S. Caillol, "A perspective approach to sustainable routes for non-isocyanate polyurethanes", European Polymer Journal, 87, 535 (2017). https://doi.org/10.1016/j.eurpolymj.2016.11.027
  40. S. Schmidt, B. S. Ritter, D. Kratzert, B. Bruchmann, and R. Mu?lhaupt, "Isocyanate-Free Route to Poly (carbohydrateurethane) Thermosets and 100% Bio-Based Coatings Derived from Glycerol Feedstock", Macromolecules, 49, 7268 (2016). https://doi.org/10.1021/acs.macromol.6b01485
  41. V. Besse, R. Auvergne, S. Carlotti, G. Boutevin, B. Otazaghine, S. Caillol, and B. Boutevin, "Synthesis of isosorbide based polyurethanes: An isocyanate free method", Reactive and Functional Polymers, 73, 588 (2013). https://doi.org/10.1016/j.reactfunctpolym.2013.01.002
  42. F. Fenouillot, A. Rousseau, G. Colomines, R. Saint-Loup, and J. P. Pascault, "Polymers from renewable 1,4: 3,6-dianhydrohexitols (isosorbide, isomannide and isoidide): A review", Progress in Polymer Science, 35, 578 (2010). https://doi.org/10.1016/j.progpolymsci.2009.10.001
  43. R. J. Kieber, S. A. Silver, and J. G. Kennemur, "Stereochemical effects on the mechanical and viscoelastic properties of renewable polyurethanes derived from isohexides and hydroxymethylfurfural" Polymer Chemistry, 8, 4822 (2017). https://doi.org/10.1039/C7PY00949F
  44. S. Oprea, V. O. Potolinca, and V. Oprea, "Synthesis and properties of new crosslinked polyurethane elastomers based on isosorbide", European Polymer Journal, 83, 161 (2016). https://doi.org/10.1016/j.eurpolymj.2016.08.020
  45. F. Xianhong, R. DeMartino, A. J. East, W. B. Hammond, and M. Jaffe, "Synthesis and characterization of isosorbide derived polyols as highly effective humectants", Bioengineering conference: Proceedings of the 2010 IEEE, 36, 26 (2010).
  46. 이대수, "이소소바이드(isosorbide)를 이용한 폴리우레탄", The Polyurethane World, 266 (2015).
  47. H. N. Kim and D. S. Lee, "Recycling of Polyurethane Scraps", Elastomers and Composites, 47, 104 (2012). https://doi.org/10.7473/EC.2012.47.2.104
  48. P. Berthevas, F. Aguirre, and J. Tu, "Recent developments in the recycling of flexible PU foams back into new PU foam products", pp.17-32, Proc. of Polyurethanes Expo2001, Columbus, 2001.
  49. S. Ghose and A. I. Isayev, "Continuous process for recycling of polyurethane foam", Journal of Cellular Plastics, 40, 167 (2004). https://doi.org/10.1177/0021955X04043717
  50. S. Ghose and A. I. Isayev, "Recycling of unfilled polyurethane rubber using high-power ultrasound", Journal of Applied Polymer Science, 88, 980 (2003). https://doi.org/10.1002/app.11740
  51. R. Zevenhoven, "Treatment and disposal of polyurethane wastes: options for recovery and recycling", pp.30, Energy Engineering and Environmental Protection Publications, Espoo, 2004.
  52. K. M. Zia, H. N. Bhatti, and I. A. Bhatti, "Methods for polyurethane and polyurethane composites, recycling and recovery: a review", Reactive and Functional Polymers, 67, 675 (2007). https://doi.org/10.1016/j.reactfunctpolym.2007.05.004
  53. P. Kopczynska, T. Calvo-Correas, A. Eceiza, and J. Datta, "Synthesis and characterisation of polyurethane elastomers with semi-products obtained from polyurethane recycling", European Polymer Journal, 85, 26 (2016). https://doi.org/10.1016/j.eurpolymj.2016.09.063
  54. 이현욱, 하진욱, 김도영, 차상언, "휘발성 유기화합물질 저감 및 착좌감 향상 자동차용 연질 폴리우레탄 폼 개발", 한국자동차공학회 춘계학술대회, 1096 (2017).
  55. 김기원, 공용식, 유환조, "컴포트가 향상된 복판형 시트 백 프레임", KR 10-2012-0140352 A (2011).
  56. S. H. Kim, J. S. Oh, H. W. Jeon, and S. H. Seo, "Polyurethane compositions for an automotive seat", U.S. patent 8906976 B2 (2012).
  57. 오정석, 곽성복, "일반총설: 자동차 내장부품용 바이오 고분자: 바이오 폴리우레탄", 고무기술, 16, 75 (2015).
  58. "Kia Soul EV achieves UL Environment Validation for biobased organic carbon content for 10% of its interior plastic", Green Car Congress (2014).
  59. 이성훈, 임병국, 최권용, 이현종, 정순준, 손태환, 한영훈, "포름알데하이드 및 아크롤레인의 방출이 저감된 폴리우레 탄 폼", KR 10-2017-0090763 A(2017).
  60. "SKC 자동차 서스펜션, 내년 완성차 적용", The Polyurethane World, 269 (2015).
  61. 이호경, 윤준영, "2액형 무용제 폴리우레탄 접착제를 적용한 인공피혁의 제조방법", KR 10-2017-0057546 A (2017).