DOI QR코드

DOI QR Code

Population, Symbiotic Effectiveness, and Protein Profile Patterns of Indigenous Rhizobium leguminosarum biovar viciae to Korean Soils

  • Received : 2017.10.24
  • Accepted : 2017.11.15
  • Published : 2017.12.31

Abstract

Some symbiotic characteristics of native Korean Rhizobium leguminosarum biovar viciae were analysed to get some informations desirable for cultivation of hairy vetch (Vicia villosa Roth) using its symbiont in Korea. The size of indigenous populations of R. leguminosarum biovar viciae was higher in seven upland soils showing $1.7{\times}10^2{\sim}5.8{\times}10^4cells\;g{\cdot}soil^{-1}$, which appeared to be 10% and 37% higher for cultivated and uncultivated soils of hairy vetch, respectively, than seven paddy soils with $1.7{\times}10^2{\sim}1.7{\times}10^4cells\;g{\cdot}soil^{-1}$. In symbiotic potentials, however, the yields of hairy vetch treated with 10-fold-diluted ($10^{-1}$) inoculum and 1000-fold-diluted ($10^{-3}$) one was 11.2% and 8.8% more, respectively, in paddy than upland. Hairy vetch inoculated with either strain KHR 106 from Sacheon or strain KHR 120 from Yesan among native Korean R. leguminosarum biovar viciae isolates was of similar yield increment of 16% (p < 0.05) in upland soils with native R. leguminosarum biovar viciae of $5.8{\times}10cells\;g{\cdot}soil^{-1}$. In case of coinoculation of the two strains, however, the yields was not significantly increased. In especial, isolate KHR 106, KHR 120, and KHR 122 from Suwon, which has also good symbiotic effectiveness, showed different protein profile patterns each other. As a result, hairy vetch is possibly able to use atmospheric nitrogen through symbiotic relationship with diverse native R. leguminosarum biovar viciae in Korean arable lands. For safe and good production of hairy, however, the use of superior strains with high symbiotic effectiveness and competitiveness will be desirable.

Keywords

References

  1. Abdul-Baki, A.A. and J.R. Teasdale. 2007. Sustainable production of fresh-market tomatoes and other vegetables with cover crop mulches. Farmers' bulletin; FB-2280, U.S. Dep. of Agriculture, Agricultural Research Service, Washington, DC.
  2. Andrade, D.S., P.J. Murphy, and K.E. Giller. 2002. The diversity of phaseolus-nodulating rhizobial populations is altered by liming of acid soils planted with Phaseolus vulgaris L. in Brazil. Appl. Environ. Microbiol. 68:4025-4034. https://doi.org/10.1128/AEM.68.8.4025-4034.2002
  3. Ballard, R.A., N. Charman, A. McInnes, and J.A. Davidson. 2004. Size, symbiotic effectiveness and genetic diversity of field pea rhizobia (Rhizobium leguminosarum bv. viciae) populations in South Australian soils. Soil Biol. Biochem. 36:1347-1355. https://doi.org/10.1016/j.soilbio.2004.04.016
  4. Campiglia, E., F. Caporali, E. Radicetti, and R. Mancinelli. 2010. Hairy vetch (Vicia villosa Roth.) cover crop residue management for improving weed control and yield in no-tillage tomato (Lycopersicon esculentum Mill.) production. Eur. J. Agron. 33:94-102. https://doi.org/10.1016/j.eja.2010.04.001
  5. Chemining'wa, G.N., and J.K. Vessey. 2006. The abundance and efficacy of Rhizobium leguminosarum bv. viciae in cultivated soils of the eastern Canadian prairie. Soil Biol. Biochem. 38:294-302. https://doi.org/10.1016/j.soilbio.2005.05.007
  6. Cherr, C.M., J.M.S. Scholberg, and R, McSorley. 2006. Green Manure approaches to crop production: A synthesis. Agron. J. 98:302-319. https://doi.org/10.2134/agronj2005.0035
  7. Choi, B.S., C.G. Kim, K.Y. Seong, D.Y. Song, W.T. Jeon, H.S. Cho, K.H. Jeong, and U.G. Kang. 2011. Change of weed community in no-till corn with legume cover crops as living much. Korean J. Weed. Sci. 31:34-40. https://doi.org/10.5660/KJWS.2011.31.1.034
  8. Clark, A.J., A.M. Decker, J.J. Meisinger, F.R. Mulford, and M.S. McIntosh. 1995. Hairy vetch kill date effects on soil water and corn production. Agron. J. 87:579-585. https://doi.org/10.2134/agronj1995.00021962008700030031x
  9. Dastikaite, A, A. Sliesaravicius and N. Marsalkiene. 2009. Sensibility of two hairy vetch (Vicia villosa Roth) genotypes to soil acidity. Agron. Res. 7:233-238.
  10. de Fatima, L.M., G. Kaschuk, O. Alberton, and M. Hungria. 2007. Soybean [Glycine max (L.) Merrill] rhizobial diversity in Brazilian oxisols under various soil, cropping, and inoculation managements. Biol. Fert. Soils 43:665-674. https://doi.org/10.1007/s00374-006-0146-x
  11. Depret, G., S. Houot, M.R. Allard, M.C. Breuil, R. Nouaim, and G. Laguerre. 2004. Long-term effects of crop management on Rhizobium leguminosarum biovar viciae populations. FEMS Microbiol. Ecol. 51:87-97. https://doi.org/10.1016/j.femsec.2004.07.009
  12. Grossman, J.M., M.E. Schipanski, T. Sooksanguan, S. Seehaver, and L.E. Drinkwater. 2011. Diversity of rhizobia in soybean [Glycine max (Vinton)] nodules varies under organic and conventional management. Appl. Soil Ecol. 50:14-20. https://doi.org/10.1016/j.apsoil.2011.08.003
  13. Jeon, W.T, S.O. Hur, K.Y. Seong, I.S. Oh, M.T. Kim, and U.G. Kang. 2011. Effect of green manure hairy vetch on rice growth and saving of irrigation water. Korean J. Soil Sci. Fert. 44:181-186. https://doi.org/10.7745/KJSSF.2011.44.2.181
  14. Kang, U.G. 1998. Symbiotic potential of Bradyrhizobium japonicum indigenous to arable land in sourthern parts of Korea. J. Korean Agric. Chem. Biotechnol. 41:247-252.
  15. Kang, U.G. 2007. Enhancement of soil productivity by soybean cultivation. Korea Soybean Digest 24:1-13.
  16. Kang, U.G., H.S. Ha, Y.T. Jung, H.W. Kang, H.D. Yun, and Y.L. Ha. 1996. Diversity of Bradyrhizobium japonicum with different colony morphology in intrinsic antibiotic resistance, serological property, and protein profile. Korean J. Soil Sci. Fert. 29:60-66.
  17. Kang, U.G., J.H. Choi, J.S. Lee, and Y.T. Jung. 1991. Studies on the development of acid tolerant and superior nitrogen fixation symbionts for pasture on hilly land. Korean J. Soil Sci. Fert. 24:219-224.
  18. Kang, U.G., P. Somasegaran, H.J. Hoben, and B.B. Bohlool. 1991. Symbiotic potential, competitiveness, and serological properties of Bradyrhizobium japonicum indigenous to Korean soils. Appl. Environ. Microbiol. 57:1038-1045.
  19. Kang, U.G., Y.T. Jung, S.K. Lee, and H.S. Ha. 1992. Rhizobium meliloti population and alfalfa yields due to nitrogen fertilization and inoculation methods at cultivated upland soil. Korean J. Soil Sci. Fert. 23:275-280.
  20. Kaschuk, G., M. Hungria, D.S. Andrade, and R.J. Campo. 2006. Genetic diversity of rhizobia associated with common bean (Phaseolus vulgaris L.) grown under no-tillage and conventional systems in Southern Brazil. Appl. Soil Ecol. 32:210-220. https://doi.org/10.1016/j.apsoil.2005.06.008
  21. Kitou, M., G.Y. Jayasinghe, F. Nagumo, F. Anugroho, and K. Kinjo. 2010. Potential growth of hairy vetch as a winter legume cover crops in subtropical soil conditions. Soil Sci. Plant Nutr. 56:254-262. https://doi.org/10.1111/j.1747-0765.2010.00445.x
  22. Ku, J.H., M.T. Kim, W.T. Jeon, K.Y. Seong, H.S. Cho, C.G. Kim, U.G. Kang, Y.U Kwon, I.S. Choi, I.S. Oh, and T.S. Kim. 2014. A new hairy vetch (Vicia villosa Roth) variety, 'Cheongpoongbora' for green manure. Korean J. Breed. Sci. 46:318-322. https://doi.org/10.9787/KJBS.2014.46.3.318
  23. Laguerre, G., P. Louvrier, M.R. Allard, N. Amarger. 2003. Compatibility of rhizobial genotypes within natural populations of Rhizobium leguminosarum biovar viciae for nodulation of host legumes. Appl. Environ. Microbiol. 69:2276-2283. https://doi.org/10.1128/AEM.69.4.2276-2283.2003
  24. Lee, J.T., G.J. Lee, C.S. Park, S.W. Hwang, and Y.R. Yeoung. 2005. Effect of hairy vetch (Vicia villosa Roth) sod culture on reducing soil loss and providing nitrogen for Chinese cabbage in highland. Korean J. Soil Sci. Fert. 38:72-78.
  25. Lima, A.S., R.S. Abrahao Nobrega, A. Barberi, K. da Silva, D.F. Ferreira, D.F., and F.M. de Souza Moreira. 2009. Nitrogen-fixing bacteria communities occurring in soils under different uses in the Western Amazon Region as indicated by nodulation of siratro (Macroptilium atropurpureum). Plant Soil 319:127-145. https://doi.org/10.1007/s11104-008-9855-2
  26. Maul, J., S. Mirsky, S. Emche, and T. Devine. 2011. Evaluating a germplasm collection of the cover crop hairy vetch for use in sustainable farming systems. Crop Sci. 51:2615-2625. https://doi.org/10.2135/cropsci2010.09.0561
  27. Mischler, R., S.W. Duiker, W.S. Curran, and D. Wilson. 2010. Hairy vetch management for no-till organic corn production. Agron. J. 102:355-362. https://doi.org/10.2134/agronj2009.0183
  28. Mothapo, N.V., J.M. Grossman, J.E. Maul, W. Shi, and T. Isleib. 2013. Genetic diversity of resident soil rhizobia isolated from nodules of distinct hairy vetch (Vicia villosa Roth) genotypes. Appl. Soil Ecol. 64:201-213. https://doi.org/10.1016/j.apsoil.2012.12.010
  29. Palmer, K.M. and J.P.W. Young. 2000. Higher diversity of Rhizobium leguminosarum biovar viciae populations in arable soils than in grass soils. Appl. Environ. Microbiol. 66:2445-2450. https://doi.org/10.1128/AEM.66.6.2445-2450.2000
  30. Parr, M., J.M. Grossman, S.C. Reberg-Horton, C. Brinton, C. Crozier. 2011. Nitrogen delivery from legume cover crops in no-till organic corn production. Agron. J. 103:1578-1590. https://doi.org/10.2134/agronj2011.0007
  31. RDA (Rural Development Administration). 2012. Cultivation and use of leguminous green manure crop. Chart 2 Hairy vetch. pp.29-84. Rural Development Administration. Suwon, Korea.
  32. Rochester, I. and M. Peoples. 2005. Growing vetches (Vicia villosa Roth) in irrigated cotton systems: inputs of fixed N, N fertiliser savings and cotton productivity. Plant and Soil, 271:251-264. https://doi.org/10.1007/s11104-004-2621-1
  33. Samson, R. 1990. Hairy vetch helps solve nitrogen problems with conservation tillage. Available at: https://www.reap-canada.com/online-library/Magazine%20Articles/Crops/17%20Hairy%20vetch.pdf. Accessed in Sept. 2017.
  34. Seo, J.H., H.J. Kim, and S.J. Kim. 2000. Change of green manure and nitrogen yield of hairy vetch according to seeding date in autumn. Korean J. Crop Sci. 45:400-404.
  35. Tumbure, A, M. Wuta, and F. Mapanda. 2013. Preliminary evaluation of the effectiveness of Rhizobium leguminosarum bv. viceae strains in nodulating hairy vetch (Vicia villosa) in the sandy soils of Zimbabwe, S. Afr. J. Plant Soil 30:233-239. https://doi.org/10.1080/02571862.2013.868536
  36. Turk, D. and H.H. Keyser. 1993. Accuracy of most-probable-number estimates of rhizobia for tree legumes. Soil Biol. Biochem. 25:69-14. https://doi.org/10.1016/0038-0717(93)90243-5
  37. Undersander, D.J., N.J. Ehlke, A.R. Kaminski, J.D. Doll, and K.A. Kelling. 1990. Hairy vetch. Alternative Field Crops Manual. University of Wisconsin-Madison and University of Minnesota. Available at: http://www.hort.purdue.edu/newcrop/afcm/vetch.html. Accessed in Sept. 2017.
  38. USDA National Institute of Food and Agriculture. 2016. Hairy vetch for cover cropping in organic farming. Available at: http://articles.extension.org/pages/18570/hairy-vetch-for-cover-cropping-in-organic-farming. Accessed in Sept. 2017.
  39. Vincent, J.M. 1970. A manual for the practical study of root nodule-bacteria. Blackwell Scientific Publication, Oxford.
  40. Wagger, M.G. 1989. Cover crop management and nitrogen rate in relation to growth and yield of no-till corn. Agron. J. 81:533-538. https://doi.org/10.2134/agronj1989.00021962008100030028x
  41. Woomer, P.L., P.W. Singleton, and B.B. Bohlool. 1988. Reliability of the most-probable-number technique for enumerating rhizobia in tropical soils. Appl. Environ. Microbiol. 54:1494-1497.
  42. Yuan, K, H. Miwa, M. Iizuka, T. Yokoyama, Y. Fujii, and S. Okazaki. 2016. Genetic diversity and symbiotic phenotype of hairy vetch rhizobia in Japan. Microbes Environ. 31:121-126. https://doi.org/10.1264/jsme2.ME15184
  43. Zhang, X.X., B. Kosier, and U.B. Priefer. 2001. Genetic diversity of indigenous Rhizobium leguminosarum bv. viciae isolates nodulating two different host plants during soil restoration with alfalfa. Mol. Ecol. 10:2297-2305. https://doi.org/10.1046/j.0962-1083.2001.01364.x