DOI QR코드

DOI QR Code

Dynamic Instability of Submerged Floating Tunnels due to Tendon Slack

긴장재 느슨해짐에 따른 해중 터널의 동적 불안정 거동

  • Won, Deok Hee (Coastal Disaster Prevention Research Center, Korea Institute of Ocean Science and Technology) ;
  • Kim, Seungjun (Dept. of Construction Safety and Disaster Prevention Engineering, Daejeon University)
  • 원덕희 (한국해양과학기술원, 연안방재연구센터) ;
  • 김승준 (대전대학교, 건설안전방재공학과)
  • Received : 2017.08.01
  • Accepted : 2017.10.11
  • Published : 2017.12.27

Abstract

This study deals with dynamic instability of a tendon moored submerged floating tunnel (SFT) due to tendon slack. In general, environmental loadings such as wave and current govern SFT design. Especially, the wave force, whose amplitude and direction continuously change, directly induces the dynamic behavior of the SFT. The motion of the floating tube, induced by the wave force, leads dynamic response of the attached tendons and the dynamic change of internal forces of the tendons significantly affects to the fatigue design as well as the structural strength design. When the severe motion of the SFT occurs due to significant waves, tendons might lose their tension and slack so that the floating tube can be transiently instable. In this study, the characteristics of dynamic instability of the SFT due to tendon slack are investigated performing hydrodynamic analysis. In addition, the effects of draft, buoyancy-weight ratio, and tendon inclination on tendon slack and dynamic instability behavior are analytically investigated.

본 연구에서는 긴장재로 계류된 해중 터널에서 긴장재의 느슨해짐에 따른 동적 불안정 거동에 대해 다룬다. 해중 터널의 설계는 파랑 및 조류 등 유체력에 의해 지배받는다. 특히 시간에 따라 지속적으로 크기 및 작용방향이 변하는 파랑은 해중 터널의 동적 거동을 직접적으로 야기하게 되는데, 파랑에 의한 부유 튜브의 운동은 계류선 내력의 동적 변동을 유발하게 되고, 이 힘의 변화는 계류선의 강도설계 뿐 만 아니라 피로 설계에도 직접적인 영향을 미친다. 파랑에 의한 터널의 운동이 극심할 경우, 계류선의 장력은 모두 소실될 수 있는데, 이 때 계류선이 느슨해짐에 따라 일시적으로 부유 터널의 운동에 대한 저항성이 사라져 동적 불안정 거동이 유발 될 수 있다. 이에 본 연구에서는 유체-구조동역학 해석기법을 통해 해중 터널 긴장재의 느슨해짐 발생 시 부유 튜브의 동적 불안정 거동에 대해 분석하였다. 특히 해중터널의 중요 설계 인자인 흘수, 부력-자중 비율(Buoyancy-Weight Ratio, BWR), 긴장재 기울임이 동적 불안정 거동에 미치는 영향에 대해 분석하였다.

Keywords

References

  1. 김승준, 박우선, 원덕희(2016) 유한요소해석을 통한 해중 터널의 유체동역학 해석, 대한토목학회논문집, 대한토목학회, 제36권, 제6호, pp.955-967. Kim, S., Park, W.S., and Won, D.H. (2016) Hydrodynamic Analysis of Submerged Floating Tunnel Structures by Finite Element Analysis, Journal of Korean Society of Civil Engineers, KSCE, Vol.36, No.6, pp.955-967 (in Korean). https://doi.org/10.12652/KSCE.2016.36.6.0955
  2. 김승준, 원덕희(2017) 불규칙 파랑 중 해중 터널 계류선의 단기 피로 손상 분석, 한국강구조학회논문집, 한국강구조학회, 제29권, 제1호, pp.49-60. Kim, S. and Won, D.H. (2017) Investigation of Fatigue Damage of the Mooring Lines for Submerged Floating Tunnels Under Irregular Waves, Journal of Korean Society of Steel Construction, KSSC, Vol.29, No.1, pp.49-60 (in Korean).
  3. Ostlid, H. (2010) When is SFT competitive?, Dynamic Response and Structural Integrity of Submerged Floating Tunnel Due to Hydrodynamic Load and Accidental Load, Procedia Engineering, First International Symposium on Archimedes Bridge (ISAB-2010), Vol.4, pp.3-11.
  4. Kunisu, H. Mizuno, S., Mizuno, Y., and Saeki, H. (1994) Study on Submerged Floating Tunnel Characteristics Under the Wave Condition, Proceedings of the Fourth International Offshore and Polar Engineering Conference. ISOPE-I-94-096.
  5. Remseth, S., Leira, B. J., Okstad, K. M., and Mathisen, K. M. (1999) Dynamic Response and Fluid / Structure Interaction of Submerged Floating Tunnels, Computures and Structures, Vol.72, pp.659-685. https://doi.org/10.1016/S0045-7949(98)00329-0
  6. Hong, Y. and Ge, F. (2010) Dynamic Response and Structural Integrity of Submerged Floating Tunnel Due to Hydrodynamic Load and Accidental Load, Procedia Engineering, First International Symposium on Archimedes Bridge (ISAB-2010) Vol.4, pp.35-50.
  7. Lu, W., Ge, F., Wang, L., Wu, X., and Hong, Y. (2011) On the Slack Phenomena and Snap Force in Tethers of Submerged Floating Tunnels Under Wave Conditions, Marine Structures, Vol.24, No.4, pp.358-376. https://doi.org/10.1016/j.marstruc.2011.05.003
  8. Oh, S. H., Park, W. S., Jang, S.C., and Kim, D.H. (2013) Investigation on the Behavioral and Hydrodynamic Characteristics of Submerged Floating Tunnel based on Regular Wave Experiments, Journal of the Korean Society of Civil Engineers, KSCE, Vol.33, No.5, pp.1887-1895. https://doi.org/10.12652/Ksce.2013.33.5.1887
  9. Cifuentes, S., Kim, S., Kim, M.H., and Park, W.S. (2015) Numerical Simulation of the Coupled Dynamic Response of a Submerged Floating Tunnel with Mooring Lines in Regular Waves, Ocean Systems Engineering, Vol.5, No.2, pp.109-123. https://doi.org/10.12989/ose.2015.5.2.109
  10. Garrett, D.L. (1981) Dynamic Analysis of Slender Rods, Journal of Energy Resources Technology, ASME, Vol.104, No.4, pp.302-306. https://doi.org/10.1115/1.3230419
  11. Simulia Inc. (2017) ABAQUS User Manual V6.17.
  12. American Petroleum Institute (2010) Planning, Designing, and Constructing Tension Leg Platforms (API RP 2T), API Publising services, Washington DC, USA.