DOI QR코드

DOI QR Code

Sensitivity Analysis of Numerical Weather Prediction Model with Topographic Effect in the Radiative Transfer Process

복사전달과정에서 지형효과에 따른 기상수치모델의 민감도 분석

  • Jee, Joon-Bum (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Min, Jae-Sik (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Jang, Min (Weather Information Service Engine, Hankuk University of Foreign Studies) ;
  • Kim, Bu-Yo (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Zo, Il-Sung (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University) ;
  • Lee, Kyu-Tae (Department of Atmospheric & Environmental Sciences, Gangneung-Wonju National University)
  • 지준범 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 민재식 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 장민 (한국외국어대학교 차세대도시농림융합기상사업단) ;
  • 김부요 (강릉원주대학교 대기환경과학과) ;
  • 조일성 (강릉원주대학교 대기환경과학과) ;
  • 이규태 (강릉원주대학교 대기환경과학과)
  • Received : 2017.07.24
  • Accepted : 2017.11.09
  • Published : 2017.12.31

Abstract

Numerical weather prediction experiments were carried out by applying topographic effects to reduce or enhance the solar radiation by terrain. In this study, x and ${\kappa}({\phi}_o,\;{\theta}_o)$ are precalculated for topographic effect on high resolution numerical weather prediction (NWP) with 1 km spatial resolution, and meteorological variables are analyzed through the numerical experiments. For the numerical simulations, cases were selected in winter (CASE 1) and summer (CASE 2). In the CASE 2, topographic effect was observed on the southward surface to enhance the solar energy reaching the surface, and enhance surface temperature and temperature at 2 m. Especially, the surface temperature is changed sensitively due to the change of the solar energy on the surface, but the change of the precipitation is difficult to match of topographic effect. As a result of the verification using Korea Meteorological Administration (KMA) Automated Weather System (AWS) data on Seoul metropolitan area, the topographic effect is very weak in the winter case. In the CASE 1, the improvement of accuracy was numerically confirmed by decreasing the bias and RMSE (Root mean square error) of temperature at 2 m, wind speed at 10 m and relative humidity. However, the accuracy of rainfall prediction (Threat score (TS), BIAS, equitable threat score (ETS)) with topographic effect is decreased compared to without topographic effect. It is analyzed that the topographic effect improves the solar radiation on surface and affect the enhancements of surface temperature, 2 meter temperature, wind speed, and PBL height.

Keywords

References

  1. Baik, J.-J., Y.-H. Kim, and H.-Y. Chun, 2001: Dry and moist convection forced by an urban heat island. J. Appl. Meteor., 40, 1462-1475. https://doi.org/10.1175/1520-0450(2001)040<1462:DAMCFB>2.0.CO;2
  2. Ca, V. T., T. Asaeda, and Y. Ashie, 1999: Development of a numerical model for the evaluation of the urban thermal environment. J. Wind Eng. Ind. Aerod., 81, 181-196. https://doi.org/10.1016/S0167-6105(99)00016-1
  3. Choi, Y.-J., S.-L. Kang, J. Hong, S. Grimmond, and K. J. Davis, 2013: A next-generation weather information service engine (WISE) customized for urban and surrounding rural areas. Bull. Amer. Meteor. Soc., 94, ES114-ES117, doi:10.1175/BAMS-D-12-00217.1.
  4. Chou, M.-D., and M. J. Suarez, 1999: A Solar Radiation Parameterization for Atmospheric Studies. NASA/TM-1999-104606, Vol. 15, 39 pp.
  5. Donlon, C. J., M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, 2011: The Operational Sea Surface Temperature and Sea Ice analysis (OSTIA). Remote Sens. Environ., 116, 140-158, doi:10.1016/j.rse.2010.10.017.
  6. Draxler, R. R., 1986: Simulated and observed influence of the nocturnal urban heat island on the local wind field. J. Clim. Appl. Meteorol., 25, 1125-1133. https://doi.org/10.1175/1520-0450(1986)025<1125:SAOIOT>2.0.CO;2
  7. Dupont, S., and P. G. Mestayer, 2006: Parameterization of the urban energy budget with the submesoscale soil model. J. Appl. Meteor. Climatol., 45, 1744-1765. https://doi.org/10.1175/JAM2417.1
  8. Dupont, S., and P. G. Mestayer, T. L. Otte, and J. K. S. Ching, 2004: Simulation of meteorological fields within and above urban and rural canopies with a mesoscale model (MM5). Bound.-Layer Meteor., 113, 111-158. https://doi.org/10.1023/B:BOUN.0000037327.19159.ac
  9. Ek, M. B., K. E. Mitchell, Y. Lin, E. Rogers, P. Grunmann, V. Koren, G. Gayno, and J. D. Tarpley, 2003: Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res., 108, 8851, doi:10.1029/2002JD003296.
  10. Garstang, M., P. D. Tyson, and G. D. Emmitt, 1975: The structure of heat islands. Rev. Geophys., 13, 139-165. https://doi.org/10.1029/RG013i001p00139
  11. Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318-2341. https://doi.org/10.1175/MWR3199.1
  12. Jee, J.-B., M. Jang, C. Yi, I.-S. Zo, B.-Y. Kim, M.-S. Park, and Y.-J. Choi, 2016: Sensitivity analysis of the highresolution WISE-WRF model with the use of surface roughness length in Seoul metropolitan areas. Atmosphere, 26, 111-126, doi:10.14191/Atmos.2016.26.1.111 (in Korean with English abstract).
  13. Jee, J.-B., M. Jang, J.-S. Min, I.-S. Zo, B.-Y. Kim, and K.-T. Lee, 2017: Estimation of solar energy based on highresolution digital elevation model on the Seoul area. Atmosphere, 27, 331-344, doi:10.14191/Atmos.2017.27.3.331 (in Korean with English abstract).
  14. Kabat, P., and Coauthors, 2002: Vegetation, Water, Humans and the Climate Change: A New Perspective on an Interactive System. Springer, 566 pp.
  15. Kim, Y.-H., and J.-J. Baik, 2005: Spatial and temporal structure of the urban heat island in Seoul. J. Appl. Meteor., 44, 591-605. https://doi.org/10.1175/JAM2226.1
  16. Kim, Y.-H., S.-B. Ryoo, J.-J. Baik, I.-S. Park, H.-J. Koo, and J.-C. Nam, 2008: Does the restoration of an inner-city stream in Seoul affect local thermal environment? Theor. Appl. Climatol., 92, 239-248. https://doi.org/10.1007/s00704-007-0319-z
  17. Kondo, H., Y. Genchi, Y. Kikegawa, Y. Ohashi, H. Yoshikado, and H. Komiyama, 2005: Development of a multi-layer urban canopy model for the analysis of energy consumption in a big city: Structure of the urban canopy model and its basic performance. Bound.-Layer Meteor., 116, 395-421. https://doi.org/10.1007/s10546-005-0905-5
  18. Kusaka, H., H. Kondo, Y. Kikegawa, and F. Kimura, 2001: A simple single-layer urban canopy model for atmospheric models: Comparison with multi-layer and slab models. Bound.-Layer Meteor., 101, 329-358. https://doi.org/10.1023/A:1019207923078
  19. Lai, Y.-J., M.-D. Chou, and P.-H. Lin, 2009: Parameterization of topographic effect on surface solar radiation. J. Geophy. Res., 115, D01104, doi:10.1029/2009JD012305.
  20. Landsberg, H. E., 1970: Man-made climate changes. Science, 170, 1265-1274, doi:10.1126/science.170.3964.1265.
  21. Lee, S.-H., and S.-U. Park, 2008: A vegetated urban canopy model form Meteorological and environmental modelling. Bound.-Layer Meteor., 126, 73-102.
  22. Lin, Y.-L., and R. B. Smith, 1986: Transient dynamics of airflow near a local heat source. J. Atmos. Sci., 43, 40-49. https://doi.org/10.1175/1520-0469(1986)043<0040:TDOANA>2.0.CO;2
  23. Ma, C. C. Y., and M. Iqbal, 1983: Statistical comparison of models for estimating solar radiation on inclined surface. Solar Energy, 31, 313-317. https://doi.org/10.1016/0038-092X(83)90019-1
  24. Martilli, A., A. Clappier, and M. W. Rotach, 2002: An urban surface exchange parameterization for mesoscale models. Bound.-Layer Meteor., 104, 261-304. https://doi.org/10.1023/A:1016099921195
  25. Masson, V., 2000: A physically-based scheme for the urban energy budget in atmospheric models. Bound.-Layer Meteor., 94, 357-397. https://doi.org/10.1023/A:1002463829265
  26. Oke, T. R., 1982: The energetic basis of the urban heat island. Quart. J. Roy. Meteor. Soc., 108, 1-24.
  27. Oke, T. R., 1988: Boundary Layer Climates. 2nd Edition. Routledge, 435 pp.
  28. Oleson, K. W., G. B. Bonan, J. Feddema, M. Vertenstein, and C. S. B. Grimmond, 2008: An urban parameterization for a global climate model. Part I: Formulation and evaluation for two cities. J. Appl. Meteor. Climatol., 47, 1038-1060. https://doi.org/10.1175/2007JAMC1597.1
  29. Oleson, K. W., G. B. Bonan, J. Feddema, and T. Jackson, 2011: An examination of urban heat island characteristics in al global climate model. Int. J. Climatol., 31, 1848-1865, doi:10.1002/joc.2201.
  30. Olfe, D. B., and R. L. Lee, 1971: Linearized calculations of urban heat island convection effects. J. Atmos. Sci., 28, 1374-1388. https://doi.org/10.1175/1520-0469(1971)028<1374:LCOUHI>2.0.CO;2
  31. Otte, T. L., A. Lacser, S. Dupont, and J. K. S. Ching, 2004: Implementation of an urban canopy parameterization in a mesoscale meteorological model. J. Appl. Meteorol., 43, 1648-1665. https://doi.org/10.1175/JAM2164.1
  32. Park, S.-H., J.-B. Jee, and C.-Y. Yi, 2015: Sensitivity test of the numerical simulation with high resolution topography and landuse over seoul metropolitan and surrounding areas. Atmosphere, 25, 309-322 (in Korean with English abstract). https://doi.org/10.14191/Atmos.2015.25.2.309
  33. Pleim, J. E., 2007: A combined local and nonlocal closure model for the atmospheric boundary layer. Part I: Model description and testing. J. Appl. Meteor. Climatol., 46, 1383-1395. https://doi.org/10.1175/JAM2539.1
  34. Rogelj, J., 2013: Summary for policymakers. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to The Fifth Assessment Report of The Intergovernmental Panel on Climate Change. T. F. Stocker et al. Eds., Cambridge University Press, 3-29.
  35. Ryu, Y.-H., J.-J. Baik, and S.-H. Lee, 2011: A new singlelayer urban canopy model for use in mesoscale atmospheric models. J. Appl. Meteor. Climatol., 50, 1773-1794, doi:10.1175/2011JAMC2665.1.
  36. Shepherd, J. M., H. Pierce, and A. J. Negri, 2002: Rainfall modification by major urban areas: Observations from spaceborne rain radar on the TRMM satellite. J. Appl. Meteorol., 41, 689-701. https://doi.org/10.1175/1520-0450(2002)041<0689:RMBMUA>2.0.CO;2
  37. Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, 2008: A description of the advanced research WRF version 3. NCAR Tech. Note NCAR/TN-475+STR, 125 pp.
  38. Taylor, C. M., E. F. Lambin, N. Stephenne, R. J. Harding, and R. L. H. Essery, 2002: The influence of land use change on climate in the Sahel. J. Climate, 15, 3615-3629. https://doi.org/10.1175/1520-0442(2002)015<3615:TIOLUC>2.0.CO;2
  39. Yokohari, M., K. Takeuchi, T. Watanabe, and S. Yokota, 2000: Beyond greenbelts and zoning: A new planning concept for the environment of Asian mega-cities. Landscape Urban Plan., 47, 159-171. https://doi.org/10.1016/S0169-2046(99)00084-5